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Objectives EQW

Review chemical bonding and crystal structures in solid materials at
basic level

Understand the physical basis of elastic deformation and theoretical
strength of solids due to their chemical bonding

Understand the basic mechanism of inelastic deformation due to
plasticity and creep

Learn why actual strength of material is different with theoretical
strength to break chemical bonds
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2.1 Introduction EQIW
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e Engineering materials
— Material which is capable to resist mechanical load
— Metal/alloy: composite of metal and nonmetal
— Ceramics/glass: inorganic and nonmetallic material
— Polymers: large molecule composed of many repeated subunits (or cells)
— Composite: composed of more than 2 material with different properties

— Different chemical bonding and microstructure affect mechanical behavior
(Strength, stiffness, brittleness, etc.)
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Figure 2.2 Size scales and disciplines involved in the study and use of engineering materials.
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Engineering materials EQW
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Table 2.1 Classes and Examples of Engineering Materials

Metals and Alloys Ceramics and Glasses

Irons and steels Clay products

Aluminum alloys Concrete

Titanium alloys Alumina (Al,O3)

Copper alloys; brasses, bronzes Tungsten carbide (WC)
Magnesium alloys Titanium aluminide (TizAl)
Nickel-base superalloys Silica (S10,) glasses
Polymers Composites

Polyethylene (PE) Plywood

Polyvinyl chloride (PVC) Cemented carbides
Polystyrene (PS) Fiberglass

Nylons Graphite-epoxy

Epoxies SiC-aluminum

Rubbers Aramid-aluminum laminate (ARALL)
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Metal and Alloys EQW
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Engineering materials EQW
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* Different chemical bonding and microstructure affect mechanical
behavior(Strength, stiffness, brittleness, etc.)

Bonding Microstructure Advantages Disadvantages
METALS )
and —  metalic |— crystalgrains |— * strong, stiff Ly * fracture
ALLOYS * ductile * fatigue
* conductive
covalent and _,I chain molecules | * low cost * low strength
POLYMERS ——f 0% o ¥ slightweight | "] *low stiffness
* resist corrosion * creep
CERAMICS . -
and — — — ——p{ ionic-covalent —p| crystal grains i «strong, stiff, hard |——p{ * brittleness
GLASSES [ “amorphous | * resist temperature
* resist corrosion
COMPOSITES —  various  ——» matrix and fiber, p{ * strong, stiff — * high cost
etc. * lightweight * delamination
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Figure 2.1 General characteristics of the major classes of engineering materials.
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2.2 Chemical Bonding in Solids EQW
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* Primary bond
— Strong, atomic force

— lonic, covalent, metallic bond

 Secondary bond
— Weak, molecular force
— Occur due to electro-static dipole

— Van der Waals, hydrogen bond (eletrostatic attraction)
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Primary Chemical Bond EQW
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e lonic bond
— Transfer(donation and acceptance) of valence electrons (& A7t X}
— Insulator in solid state, brittle, crystalline structure, high melting temp.

Covalent bond

— Share of valence electrons between atoms

— Single/double/triple bond, liquid or gas at room temperature
Metallic bond

— Donate outer shell valence electrons to cloud of electrons

— Heat/electro conductive, high ductility and malleability

©Na/—\<®cr - 2+©§;©.©
N 0°0:0-0

@ © @ COVALENT @ @ ©

IONIC METALLIC

Figure 2.3 The three types of primary chemical bond. Electrons are transferred in ionic bonding, as in NaCl; shared in
covalent bonding, as in water; and given up to a common “cloud” in metallic bonding, as in magnesium metal.
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Primary Chemical Bond in Periodic Table !%

lonic bond
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2.2.1 Primary Chemical Bond EQW
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Figure 2.4 Three-dimensional crystal Figure 2.5 Diamond cubic crystal structure of carbon. As a result of the strong and
structure of NaCl, consisting of two directional covalent bonds, diamond has the highest melting temperature, the highest
interpenetrating FCC structures. hardness, and the highest elastic modulus E, of all known solids.
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. p the soli
Figure 2.6 Molecular structures of ethylene gas (C2H4) and : ! :1
polyethylene polymer. The double bond in ethylene is replaced f - !,/'/J
by two single bonds in polyethylene, permitting formation of v‘ L;;’

the chain molecule.

Concept of metallic bonding
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e Permanent dipole bond

Secondary Bond
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— Dipole formed cause attraction between adjacent molecules

— Hydrogen bond is stronger than other dipole bond

 Van der Waals bond

— Sum of force between molecules due to covalent bonds, especially force
between two instantaneously induced dipoles

Figure 2.7 Oxygen-to-hydrogen secondary bonds
between water (H20) molecules.
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Figure 2.8 Hydrogen-to-chlorine secondary bonds
between chain molecules in polyvinyl chloride.
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A DNA molecule consists of two
twisted strands held together
along their entire length by
millions of hydrogen bonds.

(b) Hydrogen bonds H bonds
in a DNA molecule

The ability of geckos which can hang on a glass
surface using only one toe has been attributed to
the van der Waals forces between these surfaces
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2.3 Structure in Crystalline Material EQW
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e Grain in metal/ceramic, non-crystalline structure in glass, chainlike
molecules in polymer

e Unit cell: the smallest group of atomic arrangement in crystals

Lo0D

Edges and angles Cubic Tetragonal Orthorhombic
a=b=c a=b=#=c azb#c
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Monoclinic Hexagonal Rhombohedral Triclinic
azb#c a=b#c a=b=c azb#c
a=y=90"= a=pB=90°vy=120° a=pB=y=90° oz B #y=#90°

The General Features of the Seven Basic Unit Cells The lengths of the edges of the unit cells are indicated by a, b, and ¢, and the
angles are defined as follows: a, the angle between b and c; B, the angle between a and ¢; and y, the angle between a and b.
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2.3 Structure in Crystalline Material EQIW
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e Crystal structure: arrangement of atom for a given unit cell
— BCC, FCCis common in metals
— HCP: 2 parallel plane(basal plane), 3 additional atoms at center plane
— Change its structure with temperature and pressure; iron phase, annealing

D J ) ") =2 )/ﬂ) Y@ )
® 3 | @ o
J e B e s
) o | ) > )
) . > -~ a4 5 o
) J J

(a) Simple cubic (b) Body-centered cubic (c) Face-centered cubic
The three kinds of cubic unit cells, (a)simple cubic or Primitive Cubic(PC), Hexagonal close-packed(HCP) crystal structure
(b)Body-Centered Cubic(BCC), and (c)Face-Centered Cubic(FCC) - Alumina(Al,0,)
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2.3 Structure in Crystalline Material EQIW
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e Complex crystal structures
— Diamond cubic structure: half of FCC, silicon carbide(SiC)
— Most ceramic has complex crystal structure(semi-crystalline, amorphous)
— Polymer has amorphous or chainlike structure

Silicon carbide (SiC)

Silicon

F 8
17
Pl

Figure 2.11 Two-dimensional schematics of amorphous structure (left)
and crystalline structure (right) in a polymer.

Copyright 2013 Fearson Education, publishing as Prentice Hall

Diamond cubic structure of silicon carbide
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Defect in Crystals EQW
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e Polycrystalline structure
— Separated by grain boundaries
— Ceramic and metal used for engineering purpose
— Lattice plane, lattice site
— Small grain size, high strength, low conductivity

Figure 2.12 Crystal grain structure in a magnesium alloy
containing 12 wt% lithium. This cast metal was prepared in a high-
frequency induction melting furnace under an argon atmosphere.

Computer Simulation of Grain Growth in 3D using
phase field model.
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Defect in Crystals EQW
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e Defect within grain

— point defects: substitution impurity, vacancy, self interstitial, interstitial
impurity; alloy steel

— line defects: edge dislocation, screw dislocation

— surface defects: lattice plane change orientation within grain

substitutional 0000000 %%0044,
impurity vacancy 000000000000003
0000000990006 g
8900 66 ooe l00
5060000000055 20
© 00000000000000
o()o ? 6000008900544 2
0~ © self ; 000000 900044
© © 00T O intersital 600000 2006678
o ©00000 20006,
Gx0 B o 0 G
00 C 00 000920
0000 Oooo
000000 9004, o
interstitial impurity 060000000065 ¢
) ) ) ) ) ) ) Figure 2.15 Low-angle
Figure 2.13 Four types of point defectina  Figure 2.14 The two basic types of dislocations: (a) boundary in a crystal formed by
crystalline solid. edge dislocation, and (b) screw dislocation.

an array of edge dislocations.
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Schematic representation of mixed dislocation
Transmission electron micrograph of dislocation

2015/8/9




=

System Health &
Risk Management

Grain Structure of Steel

e Carbon composition
— Ferrite(a) — Almost pure iron, ductile, magnetic
— Cementite — Fe,C, brittle, hard, no magnetic
— Pearlite — layer of ferrite and cementite
— Carbon increase = Rate of pearlite increase

Composition (at% C)
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Figure 9.24 The iron—iron carbide phase diagram. [Adapted from Binary Alloy Phase
Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by

permission of ASM International, Materials Park, OH.]
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Grain Structure of Steel EQW
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e Steel Heat treatment
— Annealing: cooling slowly, large grain, improve machinability
— Quenching: cooling rapidly, martensite, small grain size, increase hardness
— Tempering: re-heating, increase ductility, decrease strength

Pearlite and martensite
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2.4 Elastic Deformation and Theoretical Strength EQW
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e Elastic deformation
— Stretching the chemical bond between the atoms in a solid
— Elastic deformation in engineering ~ 1% strain

— Strong chemical bond = Higher value of Elastic modulus
ex) diamond: 1000GPa, metal~100GPa, polymer~1GPa

(]
= kY Attraction
2 / P
D_" .
., o =—
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X — Xe
E=—
X, Distance Xe
£ do | X dP |
dP ~~__ Repulsi = TS lx=x, — 4 xX=x
i :, epU sion dg e A dx e

Figure 2.16 Variation with distance of the attractive, repulsive, and total forces between atoms. The slope dP/dx at the
equilibrium spacing x, is proportional to the elastic modulus E; the stress o,, corresponding to the peak in total force, is the
theoretical cohesive strength.
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2.4 Elastic Deformation and Theoretical Strength EQW
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e Theoretical strength
— Break primary chemical bond, gy,
— Whisker: nearly perfect single crystal

» Estimate of theoretical shear strength

—_— H —_— an
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Figure 2.18 Basis of estimates of theoretical shear strength, where it is assumed that entire
planes of atoms shift simultaneously, relative to one another.
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2.5 Inelastic deformation EQW
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e Plastic deformation
— Rearranging of the atom

— Pure metal with macroscopic size yield at very low stress than theory
—>dislocation

— Plastic deformation occur one atom at a time, rather than simultaneously
— Change neighbors and return to stable state after dislocation has passed

Figure 2.19 Shear deformation occurring in an incremental manner due to dislocation motion.
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2.5 Inelastic deformation EQW
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* Plastic deformation with dislocation

extra half plane

A ) 1Slip = N
‘ RS
S d

£
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(@

— slip step
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Figure 2.20 Slip caused by the motion of an edge dislocation.

Figure 2.22 Slip bands and slip steps caused by the motion
of many dislocations resulting from cyclic loading of AISI
1010 steel.
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2.5 Inelastic deformation EQW
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e Strength of steel
— Theoretical strength>Crystal of pure metal(Whisker)>Bulk form
— Obstacle to interrupt dislocation motion = Increase strength
— Grain boundary, alloying

6, ,MPa Form Tested Elo, Oy, ksi
~20,000 — Theoretical 10 2900
& 4| 12,600 |— Whisker 16 1830
= 10 | 9700 — Fine wire 23 1400
= —
"6‘} L
g C
e -
n - :
@ 2500 b Maraging steel 80 360
3 L %
[<b] .
(SR Steels in
g 10 F 7| buik form
2t
E C 7
5 — 400 [~ Mild steel 500 60
& - 275 —Typ. castiron 730 40
> Figure 2.24 Ultimate tensile strengths for irons and steels in various
10 £ i - forms. Note that steels are mostly composed of iron and contain small
C Lrargesingle ___ 3300 9 to moderate amounts of other elements.
C crystal (215)
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