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5.1 Introduction EQW

* Three major types of deformation: Elastic, Plastic, and Creep
deformation

* In engineering analysis, constitutive equations which describe stress-
strain relationships are essential to calculate stresses and deflections in
mechanical components.

* Consider one-dimensional stress-strain behavior and some
corresponding simple physical models for each deformation.

» Three-dimensional elastic deformation: Isotropy and Anisotropy
— lIsotropy: The elastic properties are the same in all directions.
— Anisotropy: The elastic properties vary with direction.
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5.2 Models for Deformation Behavior
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P-x Path

(a) Elastic
P =kx
(o = Eeg)

(b) Plastic
x=0ifIPl <P,
(e=0iflol <o)

(c) Steady-state creep
P=cx
(o =né)

(d) Transient creep
P = kx + cx
(0 =Ee+né)
1 : coefficient of tensile viscosity
(in analogous to ¢)
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Figure 5.1 Mechanical models for four types of deformation. The displacement—time and force—displacement
responses are also shown for step inputs of force P, which is analogous to stress o. Displacement x is analogous

to strain €.
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Plastic Deformation Models (1) EQW
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Figure 5.3 Rheological models for plastic deformation and their responses to three different strain inputs.
Model (a) has behavior that is rigid, perfectly plastic; (b) elastic, perfectly plastic; and (c) elastic, linear

hardening.
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Plastic Deformation Models (2) EQW
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* The point during unloading where the stress passes through zero

— Elastic unloading of the same slope E; as the initial loading
— The elastic strain &, is recovered corresponds to the relaxation of spring E;.

— The permanent or plastic strain &, corresponds to the motion of the slider
up to the point of maximum strain.
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Figure 5.4 Loading and unloading behavior of (a) an elastic, perfectly plastic model, (b) an elastic, linear-
hardening model, and (c) a material with nonlinear hardening.
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Creep Deformation Models (1) EQW
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- Metals and ceramics at high stress

Es

Figure 5.5 Rheological models having time-dependent behavior and their responses to a stress—time step. Both
strain—time and stress—strain responses are shown. Model (a) exhibits steady-state creep with elastic strain
added, and model (b) transient creep with elastic strain added.
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Creep Deformation Models (2) EQW
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e For the steady-state creep model of Fig. 5.5(a),

o
€=€e+EC=E—+€C
1
. _de o

The rate of creep strain:

T T n,
! !
. . . t
Solving &, by integration, e=2L42°%
Ey m
- After removal of the stress, elastic strain disappears, but the creep strain accumulated during 1-2 remains

as a permanent strain.

e For the transient creep model of Fig. 5.5(b),

The stress in the (1,, E,) stage:
o = Ee; + M€,

This gives
. _de.  0—Eze
T T 1,
Solving this differential equation,
o' ad _Eat
£=E—1+E—2(1—e N2)

-> Strain rate decreases with time and creep strain asymptotically approaches the limit ¢’ /E,.
- After stress removal, the transient creep strain decreases toward zero at infinite time due to the spring.
- The equation for the recovery response can be obtained by solving ODE.
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Relaxation Behavior (1) (optional) EQW

System Health &
Risk Management

e Creep: Accumulation of strain with time, as under constant stress

* Recovery: Gradual disappearance of creep strain that occurs after
removal of the stress

e Relaxation: Decrease in stress when a material is held at constant strain

-—( (-a

5 1 2
0 3 4
¢ |creep

recovery

L I

Figure 5.7 Stress—time step applied to a material exhibiting strain response that includes elastic, plastic, and
creep components.
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Relaxation Behavior (1) (optional) EQW
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e Creep: Accumulation of strain with time, as under constant stress

* Recovery: Gradual disappearance of creep strain that occurs after
removal of the stress

e Relaxation: Decrease in stress when a material is held at constant strain
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Figure 5.6 Relaxation under constant strain for a model with steady-state creep and elastic behavior. The step
in strain (a) causes stress—time behavior as in (b), and stress—strain behavior as in (c).
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Relaxation Behavior (2) (optional) §®m

About sudden strain &', it is absorbed by the spring entirely because the
dashpot requires a finite time to respond.

Due to the total strain being held constant, the strain in the spring
decreases, as the strain in the dashpot increases.

g =g, + ¢, = const.

The stress necessary to maintain the constant strain:

o=E¢,
The rate of creep strain:
. _de. o
T 1
Combining these equations and solving the differential equation:
_Ejt

o=E e Mm

If the strain is returned to zero, the stress is forced into compression.
Additional relaxation the occurs, but in the opposite direction, as the
relaxation always proceeds toward zero stress.
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5.3 Elastic Deformation EQW
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Table 5.2 Elastic Constants for Various Materials at Ambient

Temperature
Elastic Modulus Poisson’s Ratio
Material E, GPa (10° ksi) v
(a) Metals
Aluminum 70.3 (10.2) 0.345
Brass, 70Cu-30Zn 101 (14.6) 0.350
Copper 130 (18.8) 0.343
Iron; mild steel 212 (30.7) 0.293
Lead 16.1 (2.34) 0.44
Magnesium 44.7 (6.48) 0.291
Stainless steel, 2Ni-18Cr 215 (31.2) 0.283
Titanium 120 (17.4) 0.361
Tungsten 411 (59.6) 0.280
(b) Polymers
ABS, medium impact 24 (0.35) 0.35
Acrylic, PMMA 27 (0.40) 0.35
Epoxy 355 (0.51) 0:33
Nylon 66, dry T, (0.39) 0.41
Nylon 66, 33% glass fibers 95 (1.38) 0.39
Polycarbonate 24 (0.345) 0.38
Polyethylene, HDPE 1.08 (0.157) 0.42
(c) Ceramics and glasses
Alumina, Al,O3 400 (58.0) .22
Diamond 960 (139) 0.20
Magnesia, MgO 300 (43.5) 0.18
Silicon carbide, SiC 396 (57.4) 0.22
Fused silica glass 70 (10.2) 0.18
Soda-lime glass 69 (10.0) 0.20
Type E glass 72.4 (10.5) 0.22
Dolomitic limestone 69.0 (10.0) 0.281
Westerly granite 49.6 (7.20) 0.213

Sources: Data in [Boyer 85] p. 216, [Creyke 82] p. 222, [Kaplan 95|
pp. B-146 to B-206, [Karfakis 90], [Kelly 86] pp. 376, 392, [Kelly 94]
p- 285, [Morrell 85] Pt. 1, p. 96, [PDL 91] Vol. I-B, pp. 133-136, and
[Schwartz 92] p. 2.75.
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Elastic Constants (1) EQW
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 Homogeneous: A material that has the same properties at all points
within the solid

 Isotropic: A material whose properties are the same in all directions

y Oy .
| di A — Elastic modulus
. i ey, €, O.x
- g =2
f E/v E €x
z L — Poisson’s ratio
0 € transverse strain
AL v=-— —— :
d longitudinal strain
! €1 E; &y
- [ o, 4
! T 0 Sx gx
| L v — From elastic modulus and
) Poisson’s ratio
Vv
Figure 5.8 Longitudinal extension and lateral E

contraction used to obtain constants for a linear-elastic
material that is isotropic and homogeneous.
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Elastic Constants (2) E®m

e Poisson’s ratio is often around 0.3, 0<v < 0.5.
* Negative values of v imply lateral expansion during axial tension.

v =0.5implies constant volume, and values lager than 0.5 imply a
decrease in volume for tensile loading.

e Small-strain theory: When dimensional changes are small, original
dimensions and cross-sectional areas are used to determine stresses and
strains.

e |f a given metal is alloyed with small percentages of other metals, the
elastic constants E and v can be approximated as being the same as the
corresponding pure metal values.

— Aluminum and titanium alloys: less than 10%
— Lowe-alloy steels: less than 5%
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Figure 5.9 The six components needed to
completely describe the state of stress at a point.

The strains caused by stresses in each direction:

Resulting Strain Each Direction

Stress X Y Z
Ox Ox _ Vo _Yox
E E E
ay _Y% %y _ Yo%
E E E
oy _ Yoz _ Yoz %
E E E

Hooke’s Law for Three Dimensions (1) EQW
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e Three normal stresses:
Oy, Oy, and g,

e Three shear stresses:
Txyr Tyz, AN Ty

Total strain in each direction:
1
& =% lox —v(oy + 0,)]
[Gy —v(oy +0,)]

[0, — v(ax + ay)]
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Hooke’s Law for Three Dimensions (2) EQW
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Shear strains (G: shear modulus):
— Tx_y _ Tﬂ Tzx

Vxy = G’ Vyz G’ Vzx G

The shear strain on a given plane is unaffected by the shear stresses on
other planes.

9

— ”“jf ;&; o=t Consider a state of pure shear stress,
o, =77 . . . .
— Puesnsar Aase 770 as in a round bar under torsion in Fig.
. e S 4.41.
|4
\YW . Oy =T, 0y=-1T, 0,=0, &=37
EI = )?2 . .
s A—r) /7 ,&; €T This yields
MG A 370 2(1+v)
Equivalent Representation =7
on Principal Planes E
From G =1t/y,
Figure 4.41 A round bar in torsion and the E
resulting state of pure shear stress and strain. The G = 2(1 + V)

equivalent normal stresses and strains for a 45°
rotation of the coordinate axes are also shown.
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Volumetric Strain EQW
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L The normal strains:
i o dL dW dH
/,I, ,// gx - _, gy - ) EZ -
P i_ —Z E H + dH L w H
o =~ H i FromV = LWH,
| I
, [ - N S av av av
e i dV = —dL+—dW + —dH
e i oL~ " aw oH
/:__,_/ __________ e el Evaluating the partial derivatives and
X Lk dW dividing both sides by V = LWH,
dV dL dW dH
Figure 5.10 Volume change due to normal = + +
strains. V L |1//4 H

Volumetric strain or dilatation, &,: Ratio of the change in volume

dv
&y = —

% =& t &t &

For an isotropic material (by Hooke’s law),
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Hydrostatic Stress EQW

Hydrostatic stress: The average normal stress

Ox t+ 0y +0,
Oop =

3
Substituting this into volumetric strain for an isotropic material,
_3(1-2v)
Ey = E Op

 Bulk modulus: The constant of proportionality between volumetric strain

and hydrostatic stress
_ Op _ E

g, 3(1-2v)

e &, and gy are invariant quantities which always have the same values,
regardless of the choice of coordinate system.

e |n other words, the sum of the normal strains and the sum of the normal
stresses will have the same value for any coordinate system.
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Thermal Strains EQW
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 Thermal Strain: Elastic strain caused by the temperature changes
e =a(T —Ty) = a(AT)
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Figure 5.11 Force vs. distance between atoms. A Figure 5.12 Coefficients of thermal expansion at room
thermal oscillation of equal potential energies about temperature versus melting temperature for various

the equilibrium position x, gives an average materials. (Data from [Boyer 85] p. 1.44, [Creyke 82] p.
distance x,,4 greater than X,. 50, and [ASM 88] p. 69.)
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5.4 Anisotropic Materials EQW
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/

X

Figure 5.14 Anisotropic materials: (a) metal plate with oriented grain structure due to rolling, (b) wood, (c)
glass-fiber cloth in an epoxy matrix, and (d) a single crystal.
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Anisotropic Hooke’s Law EQW
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The general anisotropic form of Hooke’s law:

(Ex ) ( O-x\
& 0.
= [Su Si6| | o
z . z
X = $ >
Vyz S S Tyz
Vzx 16 661 | T,
\Vxy J \Txy

S;j change if the orientation of the x-y-z coordinate system is changed.
Each unique §;; has a different nonzero value.

The matrix is symmetrical with 21 independent variables.
In the isotropic case,

1/E —-v/E —v/E
—v/E 1/E —v/E 0
[S--] _ —v/E —v/E 1/E
H 1/ 0 0
0 0 1/ 0
0 0 1/G
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Orthotropic Materials; Other Special Cases

* Orthotropic material: The material that possesses symmetry about three
orthogonal planes

— The coefficients for Hooke’s law for an orthotropic material:

1/Ex —Vyx/Ey —Vzx/Ez
—Vxy/Ex 1/Ey —Vzy/Ez 0
[Si ] _ —Vxz/Ex —Vyz/Ey 1/E7
J 1/Gy, 0 0
0 0 1/G,x 0
0 0 1/Gyy.

e Cubic material: The material that has the same properties in the X-, Y-,
and Z-directions

— Three independent constants: Ey, Gyy, Vxy

— There is still one more independent constant than for the isotropic case, and
the elastic constants still apply only for the special X-Y-Z coordination system.

« Transversely isotropic material: The properties are the same all
directions in a plane, such as the X-Y plane

— Five independent constants: Ey, Vyy, Ez, Vyz, Gx 7
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Orthotropic Materials =
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Fibrous Composites EQW
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e For thin plates or sheets, we assume that 0, = 7y, = 7,y = 0.
 Therefore, Hooke’s law can be used in following form:

€x 1/Ex —Vyx/Ey 0 Ox
& = _VXY/EX 1/EY 0 Oy
Vxy 0 0 1/Gxy | \Txy

Table 5.3 Elastic Constants and Density for Fiber-Reinforced Epoxy with 60%
Unidirectional Fibers by Volume

(a) Reinforcement (b) Composite, V, = 0.60
Type E, vy Ex Ey Gyxy Vxy P
GPa (103 ksi) GPa (10% ksi) g/cm’
E-glass 723 0.22 45 12 4.4 0.25 1.94
(10.5) (6.5) (L.7) (0.64)
Kevlar 49 124 0.35 76 5.5 2.1 0.34 1.30
(18.0) (11.0) (0.8) (0.3)
Graphite 218 0.20 i32 10.3 5.5 0.25 1.47
(T-300) (31.6) (19.2) (1.5) (0.95)
Graphite 531 0.20 320 55 4.1 0.25 1.61
(GY-70) (77.0) (46.4) (0.8) (0.6)

Note: For approximate matrix properties, use E,, = 3.5 GPa (510ksi) and v,, = 0.33.
Sources: Data in [ASM 87] pp. 175-178, and [Kelly 94] p. 285.

Copyright ©2013 Pearson Education, publishing as Prentice Hall
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Figure 5.15 Composite materials with various combinations of stress direction and unidirectional
reinforcement. In (a) the stress is parallel to fibers, and in (b) to sheets of reinforcement, whereas in (c) and (d)
the stresses are normal to similar reinforcement.
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Elastic Modulus Parallel to Fibers (2) EQW
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Fibers: isotropic material with elastic constant E.., v,., and G,
Matrix: isotropic material with elastic constant E,,,, v,;;, and G,,,
Consider a uniaxial stress oy parallel to fibers.

Assumption: The fibers are perfectly bonded to the matrix.

A=A,+A4,
oxA = 0, A, + 0, Am
ox = Exéy, o, = Ey¢&p, Om = Emém

From the assumption (exy = &, = &), yielding the modulus of the composite

material:
B E.A.-+E Ay

E
X A

Volume fractions:

Thus,
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Elastic Modulus Transverse to Fibers EQW

e Consider uniaxial stress gy in orthogonal in-plane direction.

AL AL, AL,
ngT' £T=Lr, em=m
where
AL = AL, + AL,
Therefore,

&Ly + &mlm

&y = 7
L_1L 1,

Volume fractions:

Thus,
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Other Elastic Constants, and Discussion EQW

Estimate of the major Poisson’s ration, vyy

Vxy = Vivp + Vv

Estimate of the shear modulus

oo GrGm
X VG + Vi Gy

Actual values of Ey are usually reasonably close to the estimate.

Since Ey is a lower bound for the case of fibers, actual values are
somewhat higher.

Quasi-isotropic: A material whose elastic constants are approximately
the same for any direction in the X-Y plane, but different in the Z-
direction

— lIsotropic material for in-plane loading
— Transversely isotropic material for general three-dimensional analysis
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