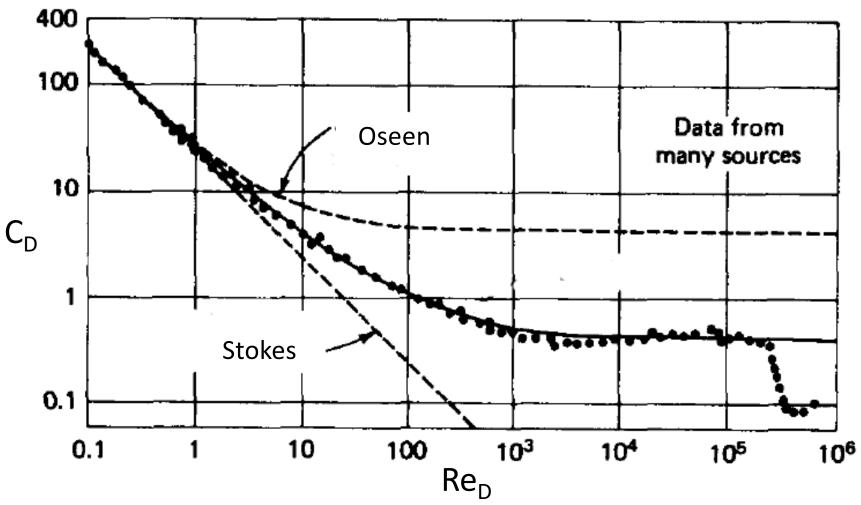
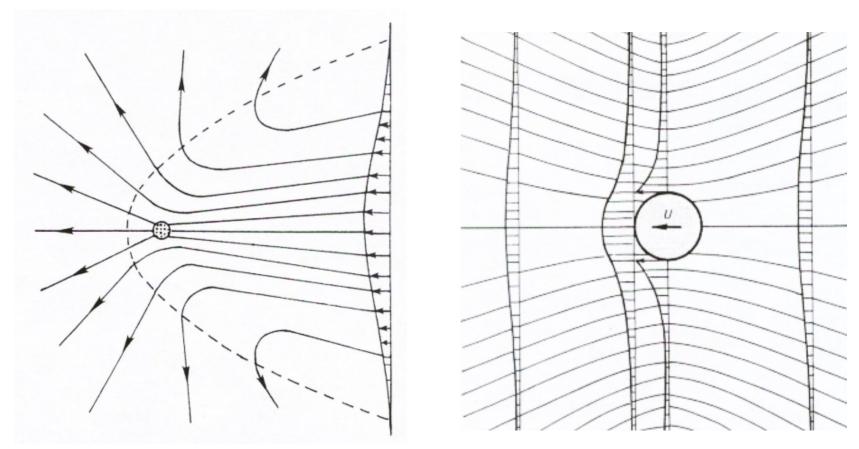


- Streamlines and velocity distributions in Stokes' solution of creeping flow due to a moving sphere
- This varies with Re_D
- There is no vortex shedding in the wake
- Viscous effects are felt everywhere



From White "Viscous Fluid Flow"



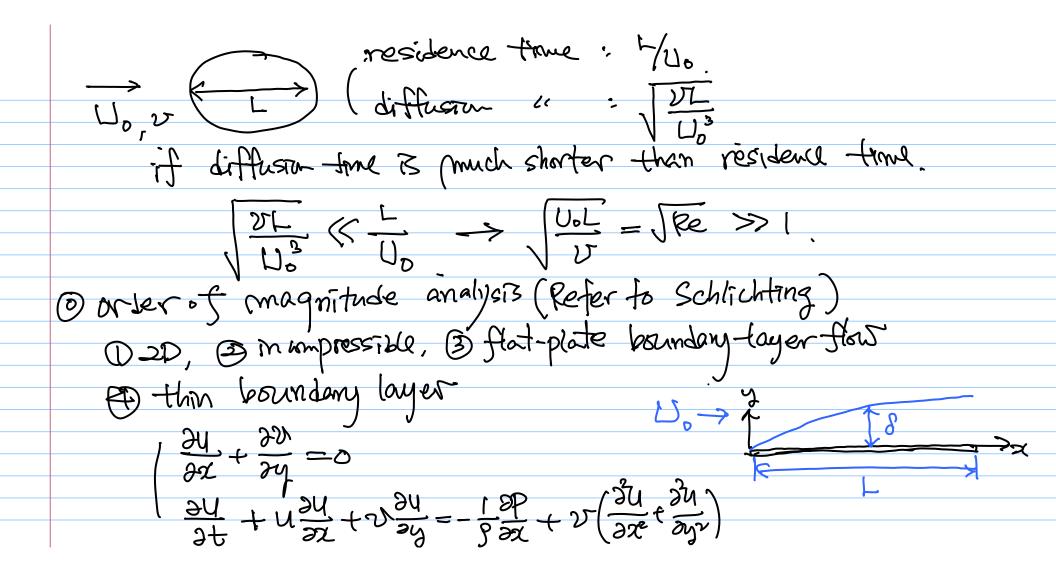
From White "Viscous Fluid Flow"

 Streamlines and velocity distributions in Oseen's solution of creeping flow due to a moving sphere.

 Note the upper stream and downstream asymmetry, a result of partial accounting for advection in the far field

* Non-uniformity of Stokes Solution & Oseen's Improvement. . as r-> 10 (far away from the sphere): Stokes sol. 73 Not Valid.
10 2 200 (for away) from the sphere); Stoke's Sol. 73 NOT
Valid.
mertia (advection)
mertia (advection) ~ Re- a.
if I was enough
to have Ma > Re
-> mertia becomes important
mertia becomes important (Re. a 771) (at far-field) > limits of Stokes solution.
Stolee's solution

· Oseen's solution. $N = L_0 + u'$, v = v', $\omega = \omega'$, free stream perturbation velocity («1)
(due to sphere) mtm conservation $: P \sqcup_{\frac{\partial X_{i}}{\partial x_{i}}} = -\frac{\partial Y_{i}}{\partial x_{i}} + \mu \nabla^{2} U_{i} ; Oseen's eq.$ and BC) Or = a. W=-Llo, W=W=0. 1 meanize Or>0, W=W=0.


$$G = \frac{24}{Re} \left(1 + \frac{3}{16} Re \right) : Oseas Sol.$$

$$G = \frac{24}{Re} \left(1 + \frac{3}{16} Re \right) : Oseas Sol.$$

	MIDTERM. 10/31 (THU). 15:30 - ZHOURS, 302-508_	2040.40.22
세숙	(3) Flow past a circular cylinder (?)	2019-10-22
	Do we have a counter part of Stokes Solution for a	
	Do we have a counter part of Stokes solution for a sphere (30) in 20 (i.e., circular cylinder)? No	
	$-\sqrt{3}\omega = 0$. Mr. D. Coordinates. $-\sqrt{2}\omega$ (no)	
	$\frac{1}{\sqrt{3}} = 0. \text{ m r-0 coordinates.}$	
	$\int \frac{3r^2}{3^2} + \frac{r}{3^2} + \frac{r}{3^2} \frac{3^2}{3^2} + \frac{r}{3^2} \frac{3^2}{3^2} = 0$	
	$\Rightarrow f(r) = Ar^3 + Br \cdot \log r + C \cdot r + \frac{b}{r}$	
)	

BC = 0, f(r) = Uor; A = B = 0, $C = U_0$. BC = 0, R = 0, R = 0, R = 0) H) No "D" can satisfy this BC! =) "Stolces" Paradox" if we re-visit stokes approximation. - 1 = 15 + 1/2 Re + 1/2 Re + 1/3 Re + 1---Din 3D, no exist. -> stokes sol. I not outid of was added.
(Oseen's improvement)

20 m 20 Can	olar cylonder), Y	a does not exist
(-: mer	ta term court be	does not exist neglected at all)
MID LEKY		
HW#2, etl.		
BOUNDARY LAYCERS		_
. As Re 9, convection	of vortexty >>	diffusion of vortraitu
, , , ,	(mtm)	(mith)
= VTSCOUS	region becomes the	νw.
	> outer: muiscid, m	rotational => free-stream
	(mner = viscous, ro	tatrarel -> bdry
	(1.11.21 - 11.23 - 10	

$$\left(\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} = -\frac{1}{9} \frac{\partial P}{\partial y} + V \left(\frac{\partial V}{\partial x} + \frac{\partial^2 V}{\partial y^2}\right)$$
We reference velocity, \square_0 , $\hat{U} = U/\square_0$.

$$\hat{P} = P/9U_0^2, \hat{L} = t/\Gamma, \hat{X} = X/L.$$

$$\Rightarrow \frac{\partial \hat{U}}{\partial \hat{X}} + \frac{\partial \hat{V}}{\partial \hat{Y}} = 0$$

$$\left(\frac{L}{U_0 C}\right) \frac{\partial \hat{U}}{\partial \hat{L}} + \hat{U} \frac{\partial \hat{U}}{\partial \hat{X}} + \hat{V} \frac{\partial \hat{U}}{\partial \hat{Y}} = -\frac{\partial \hat{P}}{\partial \hat{X}} + \frac{1}{16} \left(\frac{\partial \hat{U}}{\partial \hat{X}^2} + \frac{\partial \hat{U}}{\partial \hat{Y}^2}\right)$$

$$\left(\frac{L}{U_0 C}\right) \frac{\partial \hat{U}}{\partial \hat{L}} + \hat{U} \frac{\partial \hat{U}}{\partial \hat{X}} + \hat{V} \frac{\partial \hat{U}}{\partial \hat{Y}} = -\frac{\partial \hat{P}}{\partial \hat{X}} + \frac{1}{16} \left(\frac{\partial \hat{U}}{\partial \hat{X}^2} + \frac{\partial \hat{U}}{\partial \hat{Y}^2}\right)$$

$$\left(\frac{L}{U_0 C}\right) \frac{\partial \hat{U}}{\partial \hat{L}} + \hat{U} \frac{\partial \hat{U}}{\partial \hat{X}} + \hat{V} \frac{\partial \hat{U}}{\partial \hat{Y}} = -\frac{\partial \hat{P}}{\partial \hat{Y}} + \frac{1}{16} \left(\frac{\partial \hat{U}}{\partial \hat{X}^2} + \frac{\partial \hat{U}}{\partial \hat{Y}^2}\right)$$

$$\left(\frac{L}{U_0 C}\right) \frac{\partial \hat{U}}{\partial \hat{L}} + \hat{U} \frac{\partial \hat{U}}{\partial \hat{X}} + \hat{V} \frac{\partial \hat{U}}{\partial \hat{Y}} = -\frac{\partial \hat{P}}{\partial \hat{Y}} + \frac{1}{16} \left(\frac{\partial \hat{U}}{\partial \hat{X}^2} + \frac{\partial^2 \hat{U}}{\partial \hat{Y}^2}\right)$$

$$\left(\frac{L}{U_0 C}\right) \frac{\partial \hat{U}}{\partial \hat{L}} + \hat{U} \frac{\partial \hat{U}}{\partial \hat{X}} + \hat{V} \frac{\partial \hat{U}}{\partial \hat{Y}} = -\frac{\partial \hat{P}}{\partial \hat{Y}} + \frac{1}{16} \left(\frac{\partial \hat{U}}{\partial \hat{X}^2} + \frac{\partial^2 \hat{U}}{\partial \hat{Y}^2}\right)$$

$$\left(\frac{L}{U_0 C}\right) \frac{\partial \hat{U}}{\partial \hat{L}} + \hat{U} \frac{\partial \hat{U}}{\partial \hat{X}} + \hat{V} \frac{\partial \hat{U}}{\partial \hat{Y}} = -\frac{\partial \hat{P}}{\partial \hat{Y}} + \frac{1}{16} \left(\frac{\partial \hat{U}}{\partial \hat{X}^2} + \frac{\partial^2 \hat{U}}{\partial \hat{Y}^2}\right)$$

$$\left(\frac{L}{U_0 C}\right) \frac{\partial \hat{U}}{\partial \hat{L}} + \hat{U} \frac{\partial \hat{U}}{\partial \hat{X}} + \hat{V} \frac{\partial \hat{U}}{\partial \hat{Y}} = -\frac{\partial \hat{V}}{\partial \hat{Y}} + \frac{1}{16} \left(\frac{\partial \hat{U}}{\partial \hat{X}^2} + \frac{\partial^2 \hat{U}}{\partial \hat{Y}^2}\right)$$

$$\left(\frac{L}{U_0 C}\right) \frac{\partial \hat{U}}{\partial \hat{U}} + \hat{U} \frac{\partial \hat{U}}{\partial \hat{X}} + \hat{V} \frac{\partial \hat{U}}{\partial \hat{Y}} = -\frac{\partial \hat{V}}{\partial \hat{Y}} + \frac{1}{16} \left(\frac{\partial \hat{U}}{\partial \hat{X}^2} + \frac{\partial^2 \hat{U}}{\partial \hat{Y}^2}\right)$$

$$\left(\frac{L}{U_0 C}\right) \frac{\partial \hat{U}}{\partial \hat{U}} + \hat{U} \frac{\partial \hat{U}}{\partial \hat{X}} + \hat{V} \frac{\partial \hat{U}}{\partial \hat{Y}} = -\frac{\partial^2 \hat{U}}{\partial \hat{Y}} + \frac{\partial^2 \hat{U}}{\partial \hat$$

- Assume steady flow.

· from d-mtm: $\frac{1}{ReL} \cdot \frac{1}{f^2} \sim O(1) \rightarrow ReL \sim \frac{1}{f^2} (ReL771)$ · BL concept is valid at higher Re.

· from y - mtm: $\frac{1}{ReL} \cdot \frac{1}{f} \sim O(6)$ $-\frac{2\hat{p}}{3\hat{q}} \sim O(6)$ · $\frac{2\hat{p}/3\hat{z}}{3\hat{p}/3\hat{z}} \sim O(3)$ · $\frac{2\hat{p}}{3\hat{q}} \gg \frac{2\hat{p}}{3\hat{q}}$