

Identification of Organic Compounds

Chapter 13. MS, IR, UV/Vis 14. NMR

Identification of organic comp'ds

- isolation [purification] first
 - then ~ distillation, recrystallization
 - now ~ distillation, recrystallization, and chromatography
- structure determination
 - then ~ elemental analysis + spot tests
 - now ~ instrumental analysis
 - MS ~ fragmentation ~ molecular mass and formula
 - IR ~ vibration of bond ~ functional group
 - UV/Vis ~ absorption ~ (conj) double bonds
 - NMR ~ relaxation ~ environment Chapter 14

Classes of org comp'ds

Table 13.1 Classes of Organic Compounds

Chapter 13

MS, IR, UV/Vis

Mass spectrometry Infrared spectroscopy UV and visible spectroscopy

Sample vaporized, ionized, and fragmented;

Mass spectrum

 \square relative abundance of fragments vs m/z m/z = molecular mass

Abundance depends on

- bond strength ~ Weaker bonds break earlier.
- stability of fragment ~ More stable fragments formed more.

43 (base) & 29 are taller than 57 & 15. why?

■ 41 = 43 - 2
$$\overset{+}{\text{CH}_3\text{CH}_2\text{CH}_2} \xrightarrow{+} \overset{+}{\text{CH}_2\text{CH}=\text{CH}_2} + 2 \text{H} \cdot \frac{m/z}{m/z} = 43$$

pentane vs 2-Me-butane

Calculating molecular formula

- **I** from m/z of M (= M)
- □ 'base value' = # of C and # of H ← 'rule of 13'

□ M = 98 = $13*7 + 7 \rightarrow$ base value = C₇H₁₄

1
$$O = CH_4$$
; **1** $N = CH_2$

□ M = 98 with 1 O \rightarrow C₆H₁₀O; with N & O \rightarrow C₅H₈NO

nitrogen rule

If M is odd #, it contains odd # of N.

> Problem 5(d) p601: an amide with M = 115

$$\succ C_8H_{19} \rightarrow C_6H_{13}NO$$

Do Problem 6 - 8

Ch 13 #10

Isotopes in MS

- □ M+1 peak \leftarrow ¹³C
- M+2 peak ← CI or Br
 - others? ¹⁸O? ¹³C+D? 2 ¹³C's? No.
 - CI with 1/3 height; Br with 1/1

Table 13.2	The Natural Abundance of Isotopes Commonly Found in Organic Compounds				
Element	Natural abundance				
Carbon	¹² C 98.89%	¹³ C 1.11%			
Hydrogen	¹ H 99.99%	² H 0.01%			
Nitrogen	¹⁴ N 99.64%	¹⁵ N 0.36%			
Oxygen	¹⁶ O 99.76%	¹⁷ O 0.04%	¹⁸ O 0.20%		
Sulfur	³² S 95.0%	³³ S 0.76%	³⁴ S 4.22%	³⁶ S 0.02%	
Fluorine	¹⁹ F 100%				
Chlorine	³⁵ Cl 75.77%		³⁷ Cl 24.23%		
Bromine	⁷⁹ Br 50.69%		⁸¹ Br 49.31%		
Iodine	¹²⁷ I 100%				

High resolution MS

gives exact mass to the precision of 0.0001

gives molecular formula

Some Compounds with a Molecular Mass of 122 amu and Their Exact Molecular Masses and Molecular Formulas

Exact molecular mass (amu)	122.1096	122.0845	122.0732	122.0368	122.0579	122.0225
Molecular formula	C_9H_{14}	$C_{7}H_{10}N_{2}$	C ₈ H ₁₀ O	$C_7H_6O_2$	$C_4H_{10}O_4$	$C_4H_{10}S_2$

based on C = 12.0000 <u>not</u> 12.011

eg Prob 10

$$C_6H_{14} = 12.0000 * 6 + 1.0078 * 14$$

= 86.1096

	Common Isotopes
Isotope	Mass
$^{1}\mathrm{H}$	1.007825 amu
^{12}C	12.00000 amu
14 N	14.0031 amu
¹⁶ O	15.9949 amu
³² S	31.9721 amu
³⁵ Cl	34.9689 amu
⁷⁹ Br	78.9183 amu

 Table 13.3
 The Exact Masses of Some

Fragmentation patterns: RX

PrBr

- M/M+2 = 1/1 ~ Br
- M by giving up one of :, if any
- C–Br weakest
- heterolysis to Pr⁺ + Br• (← Br more EN)

$$CH_{3}CH_{2}CH_{2} \xrightarrow{-79} \ddot{B}_{r}; + CH_{3}CH_{2}CH_{2} \xrightarrow{-8^{1}} \ddot{B}_{r};$$

$$\xrightarrow{-e^{-}} CH_{3}CH_{2}CH_{2} \xrightarrow{79} \ddot{B}_{r}; + CH_{3}CH_{2}CH_{2} \xrightarrow{81} \ddot{B}_{r};$$

$$m/z = 122 \qquad m/z = 124$$

$$\longrightarrow CH_{3}CH_{2}\dot{C}H_{2} + \overset{79}{!}\dot{B}_{r}; + \overset{81}{!}\dot{B}_{r};$$

$$m/z = 43$$

m/z

□ 2-CI-propane

- M/M+2 = 3/1 ~ Cl
- base ion at 43 ← C–Cl heterolysis
 - $\Box C^+ + CI \bullet$
- 63 and 65? C–C α-cleavage

C-H = 99 kcal/mol

2-CI-Pr (cont'd)

- α-cleavage
 - breaking α -C–C bond
 - α to CI <u>not</u> to branch
 - resulting stable C⁺ (with complete octet)
 - a homolysis
 - occur in chlorides; <u>not</u> in bromides

Fragment'n patterns: ROR'

□ similar to RX ~ heterolytic C–O and homolytic C–C cleavage

$$\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3}CH_{2}CH - \ddot{\Theta} - CHCH_{3} \\ 2 \cdot isopropoxybutane \end{array} \xrightarrow{e^{-}} CH_{3}CH_{2}CH - \dot{\Theta} - CHCH_{3} \\ 2 \cdot isopropoxybutane \end{array} \xrightarrow{m/z = 116} \xrightarrow{m/z = 17} CH_{3}CH_{2}CH - \dot{\Theta} - CHCH_{3} \\ CH_{3}CH_{2} \\ CH_{3} \\ CH_{3}CH_{3} \\ CH_{3}CH_{3}$$

Fragment'n patterns: ROH

Ch 13 #16

□ M very short [little], if observable \leftarrow loss of H₂O facile

Fragment'n patterns: ketones

Ch 13 #17

Summary of fragment'n

- The weakest bond breaks first.
- The cleavage resulting more stable fragment occurs more.
- M formed by giving up one of :, if any.
- □ C–O, C–N, C–X bonds break heterolytically.

why?

- □ C–C, C–H bonds break homolytically.
- Sometimes 2-bond cleavage occurs.

Variations of MS

chemical ionization MS [CI-MS]

- instead of e bombardment [EI-MS]
- pre-ionized gas ionize sample by e (or H⁺) transfer
- less fragmentation \rightarrow easy to measure M
- desorption ionization
 - for larger molecules that do not vaporize
 - dissolved in matrix, ionized, and ejected from matrix
 - SIMS, MALDI, FAB
- GC-MS
 - separation by gas chromatography, and
 - then MS