

Carbonyl Compounds

Chapter 15. RCOOH and derivatives 16. RCHO and RCOR' 17. Rxn at alpha-C of C=O Chapter 15

Carboxylic Acids and Derivatives

carbonyl comp'ds nucleophilic addition-elimination

acyl groups

- Remember 4 families (of functional groups)?
 - Group I ~ C=C, C \equiv C ~ addition
 - Group II ~ R-Z (X, OH, OR, $NH_2...$) ~ S_N , E
 - Group III ~ carbonyls

a carbonyl group

Group IV ~ aromatics, heterocyclics

acetyl [R = Me]

phenyl, benzyl

benzoyl [Ar = Ph]

2 classes of C=O compounds

Ch 15 #4

□ with Z that can be replaced by Nu: Chapt 15

with Z that cannot be replaced Chapt 16

Z as leaving group

weaker base leaves more easily

Acidity/basicity

Ch 15 #6

Nomenclature: RCOOH

Ch 15 #7

Nomenclature: RCOX

acyl halide [acid halide]

- \blacksquare alkane \rightarrow alkanoyl halide
- cyclic ~ ring+carbonyl halide

ethanoyl chloride acetyl chloride

3-methylpentanoyl bromide β-methylvaleryl bromide

Br

cyclopentanecarbonyl chloride

Nomenclature: esters

Ch 15 #10

salt RCOO⁻ M⁺

cation alkanoate

sodium methanoate sodium formate

potassium ethanoate potassium acetate C $O^- Na^+$

sodium benzenecarboxylate sodium benzoate

Nomenclature: amides

Ch 15 #12

Nomenclature: carbonic acid

Structure

RC(O)X? weak resonance. why?

Physical properties

Ch 15 #15

- alcohol > RC(O)Z > ether > RH
 - HB, dipole-dipole interaction
- alcohol < RCOOH < amide</p>
 - double HB, dipole-dipole interaction (in resonance) R = C R = C R = R R =

interactions

solubility

Carbonyls with less than 4 C's are water-soluble.

- □ like ROH, ether §3.10
- Carbonyls are soluble in ether, RX, ArH.
 - □ not in RH
- Esters and N,N-disub'd amides can be solvents.
 - polar
 - □ aprotic [no active H (like NH₂ or OH)] §9.2 p438

How to react

Ch 15 #17

- addition of Nu: Z, followed by elimination of leaving group Y
 - □ intermediate <u>not</u> stable \leftarrow C–O⁻ and 2 L's
 - Better L [weaker B:] leaves. Y or Z.
- also called

- Generally speaking, a comp'd having sp³ C bonded to two EN atoms is unstable. p730 & p804
- nucleophilic acyl substitution (of Y on acyl by Z)
- acyl transfer (from Y to Z)
- difference from $S_N 2$ or $S_N 1$?
 - □ Nu: approaches $\rightarrow \pi$ bond breaks [weakest] \rightarrow add'n-elim'n C-L weakest in S_N

Relative reactivities

reactivity (of substrate) and basicity (of leaving group)

- in the 1st step [addition]
 - □ Weaker B: makes C more e-philic.
 - ← smaller contribution from 2nd form
 - \leftarrow delocalization of (+) ~ Cl < O < N
 - \leftarrow EN (+ size for Cl)
- in the 2nd step [elimination]Weaker B: leaves better.

Rxn of RCOCI

□ to ester, acid, or amide

← stronger B: than Cl-

□ mechanism

with Nu: [neutral]

■ hydrolysis to RCOOH + R'OH

■ very slow ← poor Nu: H_2O , poor L [strong B:] ⁻OR

- need acid or base catalyst
- □ transesterification to (new) RCOOR" + R'OH

+ H₂O =

alcoholysis, ester exchange

$$\begin{array}{c} O \\ \parallel \\ R \end{array} + CH_3CH_2OH \end{array} \xrightarrow{HCI} O \\ R \end{array} \begin{array}{c} O \\ \parallel \\ R \end{array} + CH_3CH_2OH \end{array} + CH_3OH$$

, C

CH₃OH

also slow and need catalyst

□ aminolysis to amide + R'OH

■ not that slow ← amine a better Nu: ~ N: better than O:

- □ cannot be acid-catalyzed, anyway ~ RNH₃⁺
- use heat if necessary
- need only 1 equiv of amine or ammonia
 - □ [−]OR, a stronger B: than amine, react with H⁺.
 - <cf> 2 equiv for RCOCI, why?

Problem 19a.

which more reactive (in nu-philic acyl substit'n), methyl acetate or phenyl acetate?

- > CH_3O^- vs PhO⁻ as L \leftarrow pK_a of MeOH vs phenol
- Problem 18. relative reactivity? not a good question

Acid-catalyzed hydrolysis of ester

Ch 15 #25

- In acidic solution, all the comp'ds [reactants, intermediates, and products] are neutral or positive.
- In basic condition, <u>no</u> positive comp'd is present.
- acid-catalysis = protonation

Inductive and resonance

□ to force the equili forward

```
use xs water
```

remove product [alcohol] (at high T)

role of acid catalyst

- make O more EW → make C more e-philic (in the 1st step)
- make L less basic (in the 2nd step)

CH₃OH

HCI

mechanism for ester with 3° alkyl

- S_N1 rather than addition-elimination
 ← stable C⁺ + weak Nu:
- result [products] the same

- transesterification
 - mechanism (exactly) the same to that of hydrolysis
 - except for the Nu: (ROH) ~ alcoholysis
 - for higher yield

$$R \xrightarrow{O} HCI \xrightarrow{O} R \xrightarrow{O} CH_3 + CH_3CH_2CH_2OH \xrightarrow{HCI} R \xrightarrow{O} COCH_2CH_2CH_3 + CH_3OH$$

Hydroxide-ion-promoted hydrolysis Ch 15 #29

mechanism

Products are <u>not</u> ROOH + RO⁻, but RCOO⁻ + ROH.

- RO⁻ is stronger B: than RCOO⁻, and protonated first.
- A-B rxn moves to weaker A and B.
- <u>irreversible</u> (unlike acid-catal'd)
 - Nu: <u>not</u> react with (–) species [RCOO[–]]

□ role of ⁻OH

- better Nu: than H₂O
 - to form TI better
- MeO[–] easier from (–) TI
 - thru lower-energy TS

- why 'OH⁻-promoted' not '-catalyzed'?
- □ Can OH⁻ promote transesterification?
 - No. Use conj B: (of ROH) instead.

