
- RCOOH for nu-philic add'n-elim'n rxn
 - reactive only in acidic form
 - □ basic form [COO⁻, carboxylate ion] refuses Nu:

$$\begin{array}{c|c}
 & O & O & O \\
 & & & O \\
 & & & & C \\
\hline
 & & & & & C \\
\hline
 & & & & & & C \\
\hline
 & & & & & & & & C
\end{array}$$

- similar reactivity as ester ← HO⁻ ≈ RO⁻
- □ Fischer esterification
 - exact reverse of (acid-cat) hydrolysis of ester p739 sl#26
 - need xs ROH for forwarding

$$\begin{array}{c}
O \\
\parallel \\
C \\
OH
\end{array}
+ CH3OH$$

$$\begin{array}{c}
HCI \\
\hline
\end{array}$$

$$\begin{array}{c}
O \\
\parallel \\
C \\
OCH3
\end{array}
+ H2O$$

- RCOOH + amine (or ammonia) →
 - an acid-base reaction, not an add'n-elim'n

$$\begin{array}{c} O \\ \parallel \\ C \\ OH \end{array} + CH_3CH_2NH_2 \longrightarrow \begin{array}{c} O \\ \parallel \\ C \\ O^-H_3NCH_2CH_3 \end{array}$$
 an ammonium carboxylate salt
$$\begin{array}{c} O \\ \parallel \\ C \\ OH \end{array} + NH_3 \longrightarrow \begin{array}{c} O \\ \parallel \\ C \\ O^-NH_4 \end{array}$$

further to amide when heated

$$\begin{array}{c}
O \\
\parallel \\
C \\
O^- H_3 NCH_2 CH_3
\end{array}$$
225 °C
$$\begin{array}{c}
O \\
\parallel \\
C \\
NHCH_2 CH_3
\end{array}$$
+ $H_2 O$

Rxn of amides

- amides <u>not</u> reactive as-it-is
 - $-NH_2$, -NHR, $-NR_2$ are very strong bases. $\rightarrow \underline{not}$ leaving

$$\begin{array}{c}
O \\
\parallel \\
C \\
NHCH_2CH_3
\end{array}$$
 + H₂O \longrightarrow no reaction CI⁻, ROH

acid-catalyzed hydrolysis (and alcoholysis)

$$\begin{array}{c}
O \\
\parallel \\
C \\
NHCH_2CH_3
\end{array}
+
\begin{array}{c}
H_2O \\
ROH
\end{array}$$

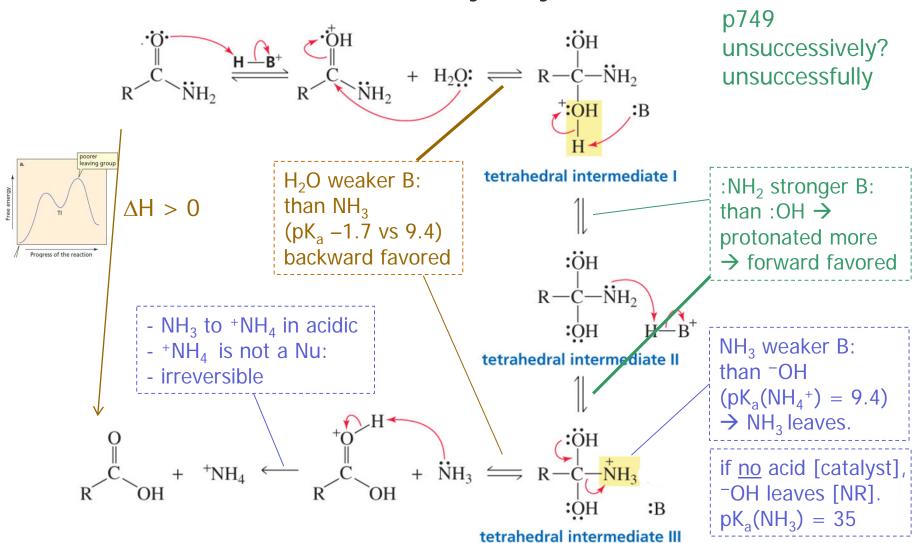
$$\begin{array}{c}
HCI \\
\Delta
\end{array}$$

$$\begin{array}{c}
O \\
\parallel \\
C \\
OH
\end{array}$$

$$\begin{array}{c}
O \\
+
\end{array}$$

$$\begin{array}{c}
C \\
OH
\end{array}$$

$$\begin{array}{c}
+
\end{array}$$


$$\begin{array}{c}
C \\
OH
\end{array}$$

$$\begin{array}{c}
+
\end{array}$$

$$\begin{array}{c}
C \\
OH
\end{array}$$

hydroxide-ion-promoted hydrolysis

mechanism for acid-catal'd hydrolysis

mechanism for OH⁻-promoted hydrolysis

$$\begin{array}{c} \ddot{\circ} \\ \ddot{\ddot{}} \ddot{\ddot{}} \\ \ddot{\ddot{}} \ddot{\ddot{}}$$

- heated in strongly basic condition
 - At low pH, OH leaves.
 - OH weaker B: than NH₂
 - At high pH, ¬NH₂ leaves.
 - ¬NH₂ weaker B: than O²-.
 - The reaction is 2nd order in ¬OH. ~ one reactant + one catalyst
- irreversible

Hydrolysis of imide to amine

 \square synthesis of amine by S_N of R-X with ammonia?

$$R-X + NH_3$$
 $1. \triangle$ $R-NH_2 + H_2O$ $2. \overline{OH}$ $R-X + R'NH_2$ $1. \triangle$ $R-NHR' + H_2O$ $2. \overline{OH}$ $R-X + R_2'NH$ $1. \triangle$ $R-NMR_2' + H_2O$

- multiple alkylation problem ← RNH₂ better Nu: than NH₃
- Gabriel synthesis (instead)

$$\begin{array}{c} \text{RCH}_2\text{Br} & \text{Gabriel synthesis} \\ \text{alkyl halide} & \text{primary amine} \end{array}$$

using phthalimide instead of ammonia

RNH₂ primary

amine

.COO

COO

Gabriel synthesis

not a Nu:

N—H
$$\overset{\circ}{\text{H\"o}}$$
:

 $\overset{\circ}{\text{N}}$
 $\overset{\circ}{\text{N}}$

-OH/H₂O

- a multistep reaction
 - H abstraction by OH
- \square S_N2 on R-X
 - hydrolysis
 - acid-catalyzed then ¬OH ~ through ammonium salt to amine
 - OH-promoted then H₂O ~ through amide ion to amine
- useful (or necessary) for preparing 1° amine
 - no polyalkylation ← one N-R ← one N-H not a Nu:

- = compounds containing cyano group [C≡N]
 - no carbonyl, but hydrolyzed to COOH
- nomenclature
 - alkanenitrile ← --ic acid
 - -onitrile ← --ic acid
 - cyanide

$$CH_3C \equiv N$$

ethanenitrile acetonitrile methyl cyanide

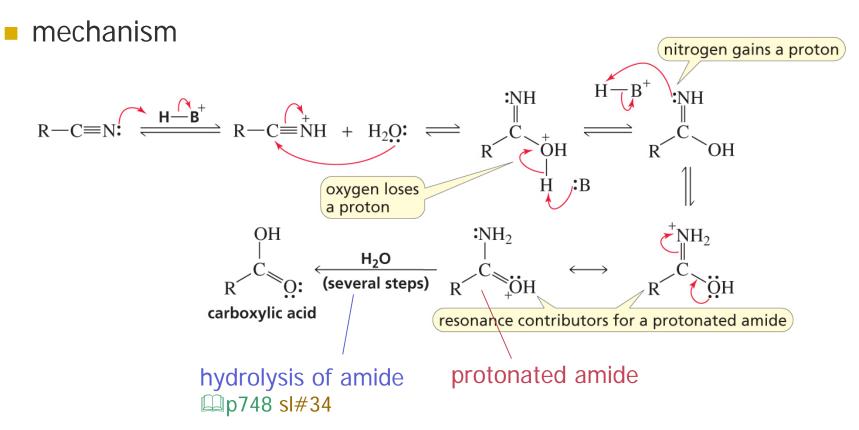
$$\bigcirc$$
C \equiv N

benzenecarbonitrile benzonitrile phenyl cyanide

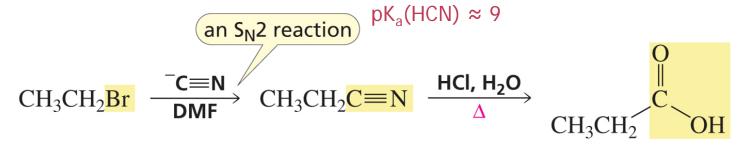
$$CH_3$$

 $CH_3CHCH_2CH_2CH_2C \equiv N$

5-methylhexanenitrile δ-methylcapronitrile isohexyl cyanide


$$CH_2 = CHC \equiv N$$

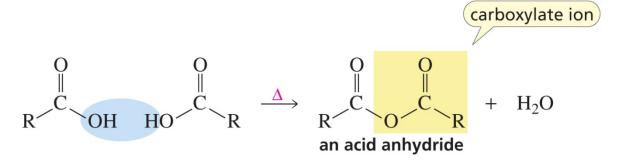
propenenitrile acrylonitrile


$$-\text{CH}_2-\text{CH}_{\overline{n}}$$
 $C \equiv N$

PAN

- hydrolysis of nitriles
 - (acid-catal'd) hydrolysis through (protonated) amide
 - even harder than amide hydrolysis ~ need acid and heat

- preparation of RCOOH from RX (thru RCN)
 - S_N2 with CN⁻ from KCN or NaCN
 - then to RCOOH



(catalytic) hydrogenation to 1° amine

$$RC = N \qquad \frac{H_2}{Ranev \ nickel} \qquad RCH_2NH_2$$

Acid anhydrides

- = acid 'without water' [酸無水物] ≠ anhydrous acid
 - two acids water → two acyl linked by O
 - an RCOOH derivative with carboxylate group

- nomenclature
 - alkanoic anhydride; -- anhydride

reactivity of add'n-elim'n

reactions

mechanism

follows general mechanism

Dicarboxylic acid

Table 15.2Structures, Names, and pK_a Values of Some Simple Dicarboxylic Acids			
Dicarboxylic acid	Common name	pK_{a1}	pK_{a2}
но	Oxalic acid	1.27	4.27
но	Malonic acid	2.86	5.70
НОООН	Succinic acid	4.21	5.64
НО	Glutaric acid	4.34	5.27
НОООН	Adipic acid	4.41	5.28
ОН	Phthalic acid	2.95	5.41

isophthalic terephthalic

- inductive effect (of COO) on pK_a
- two pK_a's

+ H⁺

+ H

- cyclic anhydride from dicarboxylic acid
 - when 5- or 6-membered ring possible

- mechanism? add'n-elim'n
- can be catalyzed by acetic anhydride or chloride

$$\begin{array}{c} \text{HO} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{HO} \\ \text{O} \\ \text{O} \\ \text{CH}_3 \\ \text{O} \\ \text{CH}_3 \\ \text{O} \\ \text{CH}_3 \\ \text{O} \\ \text{O} \\ \text{CH}_3 \\ \text{O} \\ \text{O} \\ \text{OH} \\ \text{Succinic anhydride} \\ \\ \text{Succinic anhydride} \\ \end{array}$$

how? changing L Problem 46 p759

Activating RCOOH

- RCOOH more readily available than others, but
 - poor leaving –OH in add'n-elim'n rxn
 - esp at (physiological, blood) pH of 7.4 (in basic form -O-)
- activating to RCOX or anhydride
 - just like converting –OH to –X in S_N

Activating RCOOH in biosynthesis

to acyl phosphate or adenylate using ATP

- to thioester like acetyl-CoA
 - more reactive

 \leftarrow localized δ + and weaker B:

R SR' CH₃ SCoA
a thioester acetyl-CoA

$$CH_3CH_2SH CH_3CH_2OH$$

$$pK_a = 10.5 pK_a = 15.9$$

Summary

- 2 classes of carbonyls ~ RCOOH deriv's vs A&K
- nomenclature
- □ relative reactivity ← basicity of Z:⁻
- reactions
 - acyl chloride, ester, acid, amide, imide, nitrile, anhydride
 - equilibrium
 - (tetrahedral) intermediate
 - catalyzed vs promoted