2017 Fall

“Phase Equilibria in Materials”

09.18.2017

Eun Soo Park

Office: 33-313

Telephone: 880-7221

Email: espark@snu.ac.kr

Office hours: by an appointment



Contents for previous class
- Binary System mixture/ solution / compound

- Gibbs Free Energy in Binary System

G,=X,G,+X;G, J/mol || G,=G,+4G, . J/mol

Ideal solution (AH,; =0) AG™ =RT(X,InX,+X;InXy)

G=X,G, +X3Gp + RT(X,InX, + X;In X,)
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G = X,G, + X,Gy+ Q X, X, + RT(X,InX, + X,InX,)

- Chemical potential and Activity
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* Binary System (two components) > A, B

: Equilibrium depends on not only pressure and temperature
but also composition.

Solid Solution vs. Intermetallic Compounds

- atomic scale mixture/ Random distribution on lattice -fixed A, B positions/ Ordered state
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Hume-Rothery Rules for Mixing

Empirical rules for substitutional solid-solution formation were identified from
experiment that are not exact, but give an expectation of formation.

« Solid solution:
— Crystalline solid
— Multicomponent yet homogeneous

— Impurities are randomly distributed throughout the lattice

« Factors favoring solubility of B in A (Hume-Rothery Rules)
— Similar atomic size: Arlr £ 15%
— Same crystal structure for A and B
— Similar electronegativities: |y, — xg| < 0.6 (preferably < 0.4)

— Similar valence
« If all four criteria are met: complete solid solution

« If any criterion is not met: limited solid solution



Cu-Ni Alloys Cu-Ag Alloys
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Assumption: a simple physical model for “binary solid solutions”

: in order to introduce some of the basic concepts of the thermodynamics of alloys



1.3 Binary Solutions 1) Ideal solution

G = H-TS = E+PV-TS — —
Chemical potential o
The increase of the total free energy of the B

system by the increase of very small quantity -
of A, dn,, will be proportional to p,. _ =

== dn,~ small enough [
(* na depends on the composition of phase) NEEEEEEENT  OeEE

dG' =p,dn, (T, P, ny: constant)

U - partial molar free energy of A [ oG _ [ oG’
or chemical potential of A A B S

For A-B binary solution,  dG'=p,dn, +pgdng

For variable T and P

dG'=-SdT + VdP +pu,dn, +pgdng 6



1.3 Binary Solutions 1) Ideal solution
G=X,G, +X;G; +RT(X;/InX, + X;In X;)
=(G,+RTIn X)X, +(G, +RTIn X)X,

tlA Hg
u, =G, +RTInX,
wg =Gy +RTInXg Gg
Ga
_RT lnXA< >—RT lnXB
HA Hp

Fig. 1.12 The relationship between the free energy curve and
Chemical potentials for an ideal solution.



Contents for today’s class

- Binary Solid Solution

Ideal solution and Regular solution
: Chemical potential and Activity

Real solution

- Ordered phases: SRO & LRO, superlattice,
Intermediate phase (intermetallic compound)

- Clustering

- Equilibrium in heterogeneous system



1.3 Binary Solutions AG,,;,, =AH,, - TAS,,,

Q1: What is “Regular Solution™?



1.3 Binary Solutions AG,;, = AH,, - TAS,,;,
Regular Solutions

. . _ This type of behavior is exceptional in practice
Ideal solution : AHmiX_ 0 = and usually mixing is endothermic or exothermic.

Quasi-chemical model assumes that heat of mixing, AH_.,
Is only due to the bond energies between adjacent atoms.

Assumption: the volumes of pure A and B are equal and do not change during mixing
so that the interatomic distance and bond energies are independent of composition.

Structure model of a binary solution

EO—O—D—D—D—B—E—)
EO—O—C—O—EO—EO—O—
O—EB—E—O—O—O—O—C)
OB OO OO

=

Fig. 1.13 The different types of interatomic bond in a solid solution.



Gibbs Free Energy of Regular Solutions

Q2: How can you estimate

“AH_ .. of regular solution™?

AH, .. = QX , Xz where Q=N,zg

11



Number of bond
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1.3 Binary Solutions
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1.3 Binary Solutions

AHmix

=0

Regular Solutions
Completely random arrangement

c=0 —

Ideal solution

P.. =N_zX, X, bonds per mole

N, : Avogadro's number
Z . number of bonds per atom

(1) g<O—)PABT (2) 8>0—)PAB\L

(3)

e=~(

= AH_ . =P\

AH_;, per mol

AH, ;= QX ,X; where Q =N, zg

Regular solution

Epg = =(Epn +Egp)

> Q

Q>0 2l B2

Fig. 1.14 The variation of AH,, with composition for a regular solution.



Gibbs Free Energy of Regular Solutions

Q3: How can you estimate

“Molar Free energy for regular solution™?
G, =G, + 4G . e e —

G = X,Gp + XsGp + 1Q X, X, i+ RT (X, In X, + XglnXp):

14



Regular Solutions

G,=G,+4G,. e { pre— 7 —

G = X,Gp + XsGp + 1Q X, X+ RT (X, In X, + XglnXp),

Reference state . Xy — . Xy —
0 0
Pure metal G, =G; =0 -
B ~TAS,
AGmix
(@) Q<O,high T b)Q<O,low T
AI-Imix
+

— TAS,;,

(c)Q>0,highT (dQ>0,lowT 15



Gibbs Free Energy of Regular Solutions

Q4: How can you calculate

“critical temperature, T_."?

16



e>0, AH >0/ AH,_, ~+17 kJ/mol
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Regular Solutions
Reference state

Pure metal G, =G, =0 AG,,.=AH,, - TAS,,

AH _TAS

mix

(@) With H,p < $(Has+ Hgg), Hap will be more negative than the mean of H, , + Hyg. This
implies that dissimilar atoms attract more strongly than similar atoms. There will be a tendency
towards the formation of a superlattice or a compound.

(k) With H,p > Y(H,\+ Hyg), AH,, will be positive. With H,p greater than the mean of
Hp o+ Hgg similar atoms will attract each other more strongly than dissimilar atoms. There
will be a tendency towards the formation of a mechanical mixture of A and B rather than
towards the formation of a homogeneous solution. The tendency towards phase separation
into phases A and B is dependent on AH,, predominating over AS,,. With increase in temper-
ature the entropy term becomes more significant and eventually predominates over the enthalpy
term. At low temperatures the system will consist of virtually pure A and pure B. As the temper-
ature rises the entropy effect gives rise to increasing association of A and B atoms, i.e. to in-
creasing mutual solubility of A and B. Eventually a temperature will be reached, the critical
temperature, at which complete solubility of A and B is attained. The entropy effect is exerting

such a predominating role that it completely swamps the enthalpy effect and a homogeneous
solution results.




where,

-

[ [ I T

F— - .

. dimensionless term k7/C
=k .

(0]

<

Low temp.

AG, = NCX,(1—X)+NkT[X,In X,+(1-X ) (1-X)]| ¢ [H_m _ H.mHBBJ

. energy term

* Variation of free energy with
composition for a homogeneous
solution withAH_, >0

—The curves with k7/C < 0.5 show
two minima, which approach
each other as the temperature rise.

700 High temp.
~05 | | | | | ! | [ |
o 01 02 03 04 05 06 07 08 09 1.0
XA
Fig. 14. Variation of free energy with composition for a homogeneous solution with AH,, > 0. Free energy— 19

composition curves are given for various values of the parameter k7/C.



where,

AG, = NCX,(1—X)+NKT[X,In X, +(1—=X,) In (1 —X,)] c_. [HAB - H.mHBB]

5

—

Taking the curve KT/C = 0.25 as an example, we can substitute C=4KkT in upper eq. to obtain

mix : mix

AG,,
= AG,, = kT{4X ,(1— X )HX, In X, +(1—=X,) In (1-X )]

TABLE 1
X\ 4X,(1—X,) X,InX,+(1—Xy) In (1—X,) AG] /KT
0.01 +0.0396 —0.0561 —0.0165
0.015 +0.0591 —0.0780 —0.0189
0.025 +0.0975 —0.1170 —0.0195
0.03 +0.1164 —0.1347 —0.0183
0.05 +0.19 —0.1988 —0.0088
0.1 +0.36 —0.3251 +0.0349
0.2 +0.64 —0.5004 +0.1396
0.3 +0.84 —0.6109 +0.2291
0.4 +0.96 —0.6730 +0.2870
0.5 +1.00 —0.6932 +0.3068

* Free energy curve exhibit two minima at X, = 0.02 and X ,=0.98.
20
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AHm term [4X, (1-X)]
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Fig. 14. Variation of free energy with composition for a homogeneous solution with AH,, > 0. Free energy—
composition curves are given for various values of the parameter k7/C.

—_—X,

AH, > 0and kT/C = 0.25



where,

2

AG, = NCX,(1—X)+NkT[X,In X,+(1-X ) (1-X)]| ¢ [HAB _ H‘mHBB]

I

I

I . T

F— .

. dimensionless term k7/C
=k <

O

<

Low temp.

1.00
|

High temp.
I | l

-05 ' '
o o1 02

0.3

0.4

0.5

0.6

07 08 09
Xa

1.0

. energy term

* The curves with k7/C < 0.5 show
two minima, which approach
each other as the temperature rise.

| * With KT/C = 0.5 there is a

continuous fall in free energy from
X,=0 to X,=0.5 and X ,=1.0 to

X ,=0.5. The free energy curve thus
assumes the characteristic from
one associates with the formation
of homogeneous solutions.
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Fig. 14. Variation of free energy with composition for a homogeneous solution with AH,, > 0. Free energy—
composition curves are given for various values of the parameter k7/C.



where,

AG, = NCX,(1—X)+NkT[X,In X,+(1—-X)In(1-X)1| c=- [HAB -

H.M+HBB]

A-I-[mix
E(AG"') = NC(1-2X,)+NkT{ln X,—In(1-X,)] =0
dX,
X, ) C(1—-2X,)
In = —
(I—XA kT
_C(1—2XA) .....
) . A (1—XA)'§
—~TAS, ;i\ : sojubility limit | - X, )
A B
d)Q>0,lowT

Fig. 14. Variation of free energy with composition for a homogeneous solution with AH,, > 0. Free energy-
composition curves are given for various values of the parameter k7/C. 23



Ci~2X)

Bl 1—-X,
KT klﬂ( % ) eqn. (100)
C A

0.2

l
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A

Figure. 21. Solubility curve obtained from eqn. (100)

by plotting the concentration A in two-existing phases as a function of kT/C.

The solubility of the components in each other increases with temperature until a temperature
is reached where the components are completely miscible (soluble) in each other.
The temperature at which complete miscibility occurs is called the critical temperature, T..



At T, the term d*(AG,,)/d(X,)* will be zero.

Since |
d*(AG 1 1
( .’2) = —2NC+NkTC( 3 )=
ey
kT, 2CX,\(1—-X))
" = ¢ or | = A( A)
X (1-X,) k :
The term 7, will b2 a maximum when X, = (1—X,) = 0.5.Tt Tollows that
&
T, =—. 101

A high value of the critical temperature is associated with| a high positive value for C
(= zZ[Hpag—3(Hpa+ Hgp)))-

The stronger the attraction between similar atoms, the higher 7. In those binary phase dia-
grams with a miscibility gap in the solid state the gap has not the symmetrical form shown in
Fig. 21. This is primarily because the initial simplifying assumption that the energy is the sum
of interaction between pairs of atoms is never absolutely valid. The systems Pd-Ir*, Pt-Ir**

and Pt-Au*** all have miscibility gaps in the solid state with varying degrees of asymmetry.

Most binary phase diagrams with a positive value of AH,, do not show a miscibility gap with a
closure at temperature 7, since melting occurs before 7, is reached (for example the Ag-Cu

system).




e>0, AH_. >0/ AH,_, ~+17 kJ/mol

Weight Percent Platinum
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800 3
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:
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Incentive Homework2:

please find and summary models for assymmetric miscibility gaps as a ppt file.
Ref. Acta Meter. 1 (1953) 202/ Acta Meter. 8 (1960) 711/ etc.
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e >0, AH_ ;> 0/ AH, ..~ *+5 kd/mol

Temperature (C)

0 10 20 30 40 20 60 70 80 20 100

AQ Atomic Percent Cu Cu ,




Gibbs Free Energy of Binary Solutions

Q5: “Correlation between chemical potential
and free energy”?

28



2) regular solution

Correlation between chemical potential and free energy

For 1 mole of the solution (T, P: constant )
G = E+PV-TS G=p, X, +ugXg Jmol™

G=HTS G = X,G, + X;G,+ Q X,X, +RT(X InX, + xBlan)

= XA(GA+Q(1—XA) +RTInX,)+ X,4(G, +Q(1—X,)> +RT In X )

Regular solution w,= G, + Q(1-X,) + RT In X,
=G, + Q(1-X;)> + RT In X,

u, =G, +RTINX,
ug =G, +RTINX,

Ideal solution

29



Gibbs Free Energy of Binary Solutions

Q6: What is “activity”?

30



Activity, a : effective concentration for mass action

ideal solution regular solution

t [u, =G, +RTInX,
lg =Gy +RTINX,

Gy

-w
Ot

.....

.
----

n,=G,+RTlna, : png= Gy tiRTInag
4= Gy + Q=X + RTIX, | to= Gy £ Q(1=Xo) + RT In X,
(a, ) Q X dg () 2
o~ |= = (1-X,) In(—=&) = —=—(1- X
B ) =gy 1%
a, . . dg
—= =y, = activity coefficient Vg = —— 31
Xy Degree of non-ideality XB



Activity-composition curves for solutions

AH,,x=0 | AH_. <0

t mix

{a) (b)
Ideal solution Actuol sclution Actuol soiution
AeeB= J{AeeA +BeeB) AeeB >3 (AeeA + BeeB) AsnB<H AwoA+rDaeB)
e.g Bi-Sn at 335°C eg. Au-Sn ot 600°C #.g. Cd-Pb at 500°C
O, ™ Qg, a, = G, a,™ O,

Degree of non-ideality

ag ,
¥s =— =constant (Henry'slLaw)
For a dilute solution of B in A (X;—0) Xs
Yo =A =1 (Rault's Law)
XA

32



Variation of activity with composition (a) ag, (b) a,

_ Henry’s law

0de=————- 0
0 Xg —» 1
A B
(a)
Line 1 : (a) ag=Xg, (b) ap,=X, ideal solution...Rault’s law
Line 2 : (a) ag<Xg, (b) a,<X, AH,;, <0 4m  (a, )_ Q vy
- - “+ A
Line 3 : (a) ag>Xg, (b) a,>X, AH,_. >0 AL KT .



Gibbs Free Energy of Binary Solutions

Q7: “Chemical equilibrium of multi-phases”?
—> Gibbs Phase Rule

34



—~dn, moles of A

moles of A nf moles of A

p’ phase

moles of B Ng mMoles of B

Fig. 10. Transfer of dn, moles of component A from the f to the a phase.
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Activity of a component is just another means of describing the state
of the component in a solution.

degree of non-ideality 7 — A — =Ya» 8p= YAXA
g y X XA

jo— v, - activity coefficient

.........................

. . ,
.
.
. . .
. .
. .
M ' : - -
. .o' . .. P :
e . . o . -
» .
. K -
c T -
. . . .
) . '.._I.- -.]'.- -.]_.-

Activity or chemical potential of a component is important when several
condensed phases are in equilibrium.

Chemical Equilibrium (p, a) - multiphase and multicomponent
(Me=pP=pr=..), (@*=af=ayr=..)

(pg2=pgP=pgr=...), (ag* = agf=agr=...)



The Gibbs Phase Rule

Degree of freedom (number of variables that can be varied independently)

= the number of variables — the number of constraints
- Number of phases : p, number of components : ¢,

- #of controllable variable : composition (c-1)p, temperature : p, pressure : p

- #of restrictions :

(p-1)c from chemical equilibrium ul=pul = ==yt
— A _ — . —

p-1 from thermal equilibrium r"=r"=7r"=-..=7T"

p-1 from mechanical equilibrium PP=pf=p =...=p?

- Number of variable can be controlled with maintaining equilibrium

f=-Dp+p+p-(p-Dc-(p-1)-(p-D=c—-p+2
f=c-p+2

37

- Ifpressureisconstant : f=(c-Dp+p-(p-Dc—-(p-D=lc-p+1




1.5 Binary phase diagrams

The Gibbs Phase Rule

the number of separate phases (P) and the number of chemical
components (C) in the system. It was deduced from thermodynamic
principles by Josiah Willard Gibbs in the 1870s.

Gibbs phase rule F=C+N-P
F: degree of freedom

C: number of chemical variables

N: number of non-chemical variables

P: number of phases

In general, Gibbs' rule then follows, as:

F=C-P+2 (fromT,P).

From Wikipedia, the free encyclopedia
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Temperature (°C)

Composition (at% Sn)

The Gibbs Phase Rule

For Constant Pressure,
P+F=C+1

100

300

200

100 [—

600

500

400

300

11200

— 100

(Pb)

20

Composition (wt% Sn)

80

100
(Sn)

Temperature (°F)

‘ single phase

F=C-P+1

=2-1+1
=2

can vary T and

composition

independently

=

‘;7;,

++¢D

1
1

nnll o

—\NO'c

canvary T or
composition

‘ eutectic point

F=C-P+1
=2-3+1
=0
can'tvary T or
composition
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The Gibbs Phase Rule

L  one-phase region

Application of Gibbs phase rule:

For a binary system at ambient pressure:
C=2 (2 elements)

two-phase
equilibrium (line)

N=1 (temperature, no pressure) / \
For single phase: F=2: % and T “
(a region)
For a 2-phase equilibrium:  F=1: ,
% orT (aline)
For a 3-phase equilibrium: F=0, (invariant three-phase
point) equilibrium (point)
a+h
Pb Sn

40



- Binary System mixture/ solution / compound

- Gibbs Free Energy in Binary System

G,=X,G,+tX,G, J/mol | G,=G,+4G, . J/mol

Ideal solution (AH_. =0) AG™ =RT(X,InX,+X;InXy)

G=X,G, +X;G; + RT(X,InX, + X;In X;)

Regular solution |AH -p, ¢ |wherec=¢,, _%(SAA + €gg)

G = X,G, + X,Gy+ Q X, X, + RT(X,InX, + X,InX,)

- Chemical potentlal and Act|V|ty

Ha =
on
A /T, P, ng a_ = y, = activity coefficient
we ZA0] OJ3) ZHE|7| If20f| dn, 7t 0§D ZHORA A4 B3} glofof A

- Chemical eqmllbrlum — Gibbs phase rule



