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Contents for previous class

- Chemical potential and Activity 

- Gibbs Free Energy in Binary System

- Binary System

Ideal solution

Regular solution

mixture/ solution / compound

G2 = G1 + ΔGmix J/molG1 = XAGA + XBGB J/mol

(∆Hmix=0) )lnln( BBAA
mix XXXXRTG 

         mix AB AB AA BB
1H P where ( )
2

)lnln( BBAABABBAA XXXXRTXXGXGXG 

 
     B

A
A T, P, n

G'
n

• μA = GA + RTlnaA

μ는 조성에 의해 결정되기 때문에 dnA가 매우 작아서 조성변화 없어야
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Solid Solution vs. Intermetallic Compounds

Pt0.5Ru0.5 – Pt structure (fcc) PbPt – NiAS structure

* Binary System (two components)A, B

: Equilibrium depends on not only pressure and temperature
but also composition.

- atomic scale mixture/ Random distribution on lattice -fixed A, B positions/ Ordered state



4

• Solid solution:
– Crystalline solid 

– Multicomponent yet homogeneous 

– Impurities are randomly distributed throughout the lattice 

• Factors favoring solubility of B in A (Hume-Rothery Rules)

– Similar atomic size: ∆r/r ≤ 15%
– Same crystal structure for A and B 
– Similar electronegativities: |A – B| ≤ 0.6 (preferably ≤ 0.4)
– Similar valence

• If all four criteria are met: complete solid solution

• If any criterion is not met: limited solid solution

Empirical rules for substitutional solid-solution formation were identified from 
experiment that are not exact, but give an expectation of formation. 

Hume-Rothery Rules for Mixing



Cu-Ag AlloysCu-Ni Alloys

complete solid solution limited solid solution

: in order to introduce some of the basic concepts of the thermodynamics of alloys

Assumption: a simple physical model for “binary solid solutions”
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Chemical potential

 A AdG' dn

The increase of the total free energy of the 
system by the increase of very small quantity 
of A, dnA, will be proportional to μA.

dnA~ small enough 
(∵ A depends on the composition of phase)

(T, P, nB: constant )

G = H-TS = E+PV-TS

For A-B binary solution,    A A B BdG' dn dn

      A A B BdG' SdT VdP dn dn
For variable T and P

1) Ideal solution1.3 Binary Solutions

A :  partial molar free energy of  A  
or chemical potential of  A

 
     B

A
A T, P, n

G'
n

 
     A

B
B T, P, n

G'
n



BBBAAA XXRTGXXRTG )ln()ln( 

1) Ideal solution1.3 Binary Solutions

μB’

μA’ XB’

Fig. 1.12 The relationship between the free energy curve and
Chemical potentials for an ideal solution. 7



Contents for today’s class

- Equilibrium in heterogeneous system

- Binary Solid Solution

Real solution

Ideal solution and Regular solution  

- Ordered phases: SRO & LRO, superlattice, 
Intermediate phase (intermetallic compound)

- Clustering 

: Chemical potential and Activity 
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Q1:	What	is	“Regular	Solution”?

∆Gmix = ∆Hmix - T∆Smix1.3 Binary Solutions
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Ideal solution : Hmix= 0

Quasi-chemical model assumes that heat of mixing, Hmix,
is only due to the bond energies between adjacent atoms.

Structure model of a binary solution

Regular Solutions
∆Gmix = ∆Hmix - T∆Smix1.3 Binary Solutions

Assumption: the volumes of pure A and B are equal and do not change during mixing 
so that the interatomic distance and bond energies are independent of composition.  

This type of behavior is exceptional in practice 
and usually mixing is endothermic or exothermic.

Fig. 1.13 The different types of interatomic bond in a solid solution.
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Q2:	How	can	you	estimate

“ΔHmix of	regular	solution”?

Gibbs	Free	Energy	of	Regular	Solutions

∆Hmix = ΩXAXB where Ω = Nazε
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Bond energy          Number of bond

A-A               AA                                  PAA
B-B                BB                                   PBB
A-B                AB                                  PAB

     AA AA BB BB AB ABE P P P

         mix AB AB AA BB
1H P where ( )
2

Internal energy of the solution 

Regular Solutions
1.3 Binary Solutions
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 mixH 0

Completely random arrangement 

ideal solution

AB a A B

a

P N zX X bonds per mole
N : Avogadro's number
z : number of bonds per atom

∆Hmix = ΩXAXB where Ω = Nazε

  mix ABH P

Regular Solutions

0 )(
2
1

BBAAAB  

 ABP0  ABP0

0

Ω >0 인경우

1.3 Binary Solutions

(1) (2)

(3)

Fig. 1.14 The variation of ΔHmix with composition for a regular solution.
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Q3:	How	can	you	estimate

“Molar	Free	energy	for	regular	solution”?

)lnln( BBAABABBAA XXXXRTXXGXGXG 

G2 = G1 + ΔGmix ∆Hmix -T∆Smix

14

Gibbs	Free	Energy	of	Regular	Solutions



Regular Solutions

Reference state

Pure metal 000  BA GG

)lnln( BBAABABBAA XXXXRTXXGXGXG 

G2 = G1 + ΔGmix

∆Gmix = ∆Hmix - T∆Smix

∆Hmix -T∆Smix
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Q4:	How	can	you	calculate

“critical	temperature,	Tc”?

16

Gibbs	Free	Energy	of	Regular	Solutions
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 > 0,  Hmix> 0 / Hmix~ +17 kJ/mol



Regular Solutions

∆Gmix = ∆Hmix - T∆Smix

∆Hmix -T∆Smix

Reference state

Pure metal 000  BA GG

(a)

(b)
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where,

: energy term

Low temp.

High temp.

* Variation of free energy with 
composition for a homogeneous 
solution with ΔHmix > 0

→The curves with kT/C < 0.5 show 
two minima, which approach 
each other as the temperature rise.
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where,

Taking the curve kT/C = 0.25 as an example, we can substitute C=4kT in upper eq. to obtain

∆Hmix ∆Smix

* Free energy curve exhibit two minima at XA = 0.02 and XA=0.98.



where,

Low temp.

High temp.

* The curves with kT/C < 0.5 show 
two minima, which approach each 
other as the temperature rise.
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where,

: energy term

Low temp.

High temp.

* With kT/C ≥ 0.5 there is a 
continuous fall in free energy from 
XA=0 to XA=0.5 and XA=1.0 to 
XA=0.5. The free energy curve thus 
assumes the characteristic from 
one associates with the formation
of homogeneous solutions.

* The curves with kT/C < 0.5 show 
two minima, which approach 
each other as the temperature rise.



23

where,

: solubility limit



Figure. 21. Solubility curve obtained from eqn. (100) 
by plotting the concentration A in two-existing phases as a function of kT/C.

The solubility of the components in each other increases with temperature until a temperature 
is reached where the components are completely miscible (soluble) in each other. 
The temperature at which complete miscibility occurs is called the critical temperature, Tc.
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 > 0,  Hmix> 0 / Hmix~ +17 kJ/mol

Incentive Homework2: 
please find and summary models for assymmetric miscibility gaps as a ppt file.
Ref. Acta Meter. 1 (1953) 202/ Acta Meter. 8 (1960) 711/ etc.
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 > 0,  Hmix> 0 / Hmix~ +5 kJ/mol
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Q5:	“Correlation	between	chemical	potential	
and	free	energy”?

Gibbs	Free	Energy	of	Binary	Solutions
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1   A A B BG X X Jmol
For 1 mole of the solution (T, P: constant )

G = E+PV-TS

G = H-TS

2) regular solution

ABBABABABA XXXXXXXXXX 22)( 

BBBB

AAAA

XRTXG

XRTXG

ln)1(

ln)1(
2

2









)lnln( BBAABABBAA XXXXRTXXGXGXG 

)ln)1(()ln)1(( 22
BBBBAAAA XRTXGXXRTXGX 

  
  

A A A

B B B

G RTln X
G RTln X

Correlation between chemical potential and free energy

Ideal solution

복잡해졌네 --;;

Regular solution
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Q6:	What	is	“activity”?

Gibbs	Free	Energy	of	Binary	Solutions
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Activity, a : effective concentration for mass action

ideal solution regular solution

μA = GA + RTlnaA                                            μB = GB + RTlnaB

  
  

A A A

B B B

G RTln X
G RTln X

BBBBAAAA XRTXGXRTXG ln)1(ln)1( 22  

  B
B

B

a
X

2)1()ln( B
B

B X
RTX

a




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Degree of non-ideality



1
A

A

X
a1

A

A

X
a

Degree of non-ideality
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Variation of activity with composition (a) aB, (b) aA

aB aA

Line 1 : (a) aB=XB, (b) aA=XA

Line 2 : (a) aB<XB, (b) aA<XA

Line 3 : (a) aB>XB, (b) aA>XA

ideal solution…Rault’s law
ΔHmix<0
ΔHmix>0

B in A 
random mixing

A in B 
random mixing
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Q7:	“Chemical	equilibrium	of	multi‐phases”?
Gibbs	Phase	Rule

Gibbs	Free	Energy	of	Binary	Solutions

34
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2
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Degree of freedom (number of variables that can be varied independently)

The Gibbs Phase Rule

= the number of variables – the number of constraints
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The Gibbs Phase Rule

In chemistry, Gibbs' phase rule describes the possible number of
degrees of freedom (F) in a closed system at equilibrium, in terms of
the number of separate phases (P) and the number of chemical
components (C) in the system. It was deduced from thermodynamic
principles by Josiah Willard Gibbs in the 1870s.

In general, Gibbs' rule then follows, as:

F = C − P + 2 (from T, P).
From Wikipedia, the free encyclopedia

1.5 Binary phase diagrams
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23
1

1

1

1 single phase
F = C - P + 1

= 2 - 1 + 1
= 2

can vary T and 
composition 
independently

2 two phase
F = C - P + 1

= 2 - 2 + 1
= 1

can vary T or
composition 

3 eutectic point
F = C - P + 1

= 2 - 3 + 1
= 0

can’t vary T or 
composition

For Constant Pressure, 
P + F = C + 1

The Gibbs Phase Rule
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The Gibbs Phase Rule
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- Chemical potential and Activity 

- Gibbs Free Energy in Binary System

- Binary System

Ideal solution

Regular solution

mixture/ solution / compound

G2 = G1 + ΔGmix J/molG1 = XAGA + XBGB J/mol

(∆Hmix=0) )lnln( BBAA
mix XXXXRTG 

         mix AB AB AA BB
1H P where ( )
2

)lnln( BBAABABBAA XXXXRTXXGXGXG 

 
     B

A
A T, P, n

G'
n

• μA = GA + RTlnaA

μ는 조성에 의해 결정되기 때문에 dnA가 매우 작아서 조성변화 없어야

41- Chemical equilibrium →	Gibbs phase rule 


