Polymeric Materials

Chemical and Biological Engineering 458.645 2nd semester, 2019

Textbook

Plastic Technology Handbook

- 5th Edn, 2018
- Chanda, M
- 7 chapters, 1012 pages
- Covers everything of polymeric materials
 - properties, processing, materials

Chapters

- 1 Characteristics
- 3 Properties and testing
- 2 Fabrication = processing
- 4 Industrial polymers = structural polymers
- 5 Polymers in special uses = functional polymers
- 6 Recycling
- 7 Trends in applications

Grading

total 220 points

- 2 exams x 100 = 200 points
 - midterm, Chapt 1 3
 - □ final, Chapt 4 7
- 2 homework assignments x 10 = 20 points

past years' exam problems

Schedule

Chapter 1

Characteristics

molecular characteristics structure-property relations additives

Polymer

polymer

- polymer = poly + mer = many parts
- macromolecules = giant molecule

polymerization

- monomer to oligomer to polymer
- degree of polymerization [DP]
 - **n** mol wt of monomer $[M_0] \times DP = mol wt of polymer$
 - molecular weight = molar mass [g/mol]
- distribution of mol wt; average mol wt

Ch 1 Sl 7

Mol wt averages

□ number-average mol wt, M_n

$$\bar{M}_{n} = \frac{W}{N} = \frac{\sum N_{i}M_{i}}{N} = \sum n_{i}M_{i}$$
$$\overline{DP}_{n} = \frac{\bar{M}_{n}}{M}$$

M_n determination

 M_0

- end-group analysis
- colligative property measurements
 - ebulliometry (← bp elevation)
 - cryoscopy (← fp depression)
 - membrane osmometry [MO]
 - vapor phase [pressure] osmometry [VPO]
- none used these days

wt-avg mol wt, M_w

$$\bar{M}_{w} = \sum w_{i}M_{i} = \frac{\sum W_{i}M_{i}}{\sum W_{i}} = \frac{\sum N_{i}M_{i}^{2}}{\sum N_{i}M_{i}}$$

• weighted on the larger; $M_w \ge M_n$

- M_w determination
 - light scattering [LS]
 - intensity of scattered light ∝ (mass of molecule)² and concentration of solution
 - LALLS used
 - more for dynamics

Molecular Weight of Species i

□ viscosity-avg mol wt, M_v $\bar{M}_v = \left[\sum w_i M_i^a\right]^{1/a} = \left[\sum N_i M_i^{1+a} / \sum N_i M_i\right]^{1/a}$

- M_v determination
 - dilute solution viscometry [DSV]
 - intrinsic viscosity $([\eta]) = \lim_{c \to 0} \frac{1}{c} \left(\frac{\eta}{\eta_o} 1 \right)$
 - Mark-Houwink-Sakurada [MHS] eqn
 - relates size and mass $[\eta] = K \overline{M}_{v}^{a}$
 - K and a from handbook
 - popular (in the lab)

Molecular Weight of Species i

Mol wt distribution

polydispersity index [PDI]

- $PDI = M_w/M_n$
 - measure of width of distribution
 - PDI = 1 ~ monodisperse
 - PDI = 2 3 for step polymers
 - PDI = 2 10 for chain polymers

determination of MWD

- fractionation
- gel permeation chromatography [GPC]
 most popular
- Example 1, 2, 3

M_v

Molecular Weight of Species i

Μ.,

Mn

Μ,

W,

gel permeation chromatography [GPC]

MW and properties

threshold MW

- gas to liquid to wax to solid
- depends on type of polymers
 small for step polymers
- dependence
 - MW independent
 - dep on chemical structure
 - M_n dependent

 $\Box T_g = T_g(\infty) - A/M_n$

most thermomechanical prop's

M_w dependent
 η = B M_w^x

Fig 1.2 p2

Ch 1 Sl 13

classification

- addition vs condensation polym'n ~ old
 - by monomer type ~ C=C or ring vs functional group
- chain vs step polym'n ~ current
 - by growth mechanism ~ chain rxn vs step rxn
- chain polym'n
 - $\blacksquare I \rightarrow I^* \rightarrow IM^* \rightarrow IMM^* \rightarrow \cdots \rightarrow IM_n^* \rightarrow IM_{n+1}^*$
 - *; active center
 - □ * = [free-radical] \rightarrow radical polym'n
 - □ * = \oplus [cation] \rightarrow cationic poym'n
 - □ * = Θ [anion] \rightarrow anionic poym'n
 - * = coordination site \rightarrow coordination polym'n

mechanism

initiation

termination

- death of active center stopping chain growth
- through either coupling or disproportionation

chain transfer

- to initiator, monomer, solvent, and/or polymer
- CT to I, M, S lower mol wt
- CT to polymer enlarge PDI
- retardation and inhibition
- autoacceleration
 - increase of polym'n rate at later stage [high conversion]
 - make PDI even larger

Ionic polym'n

- selective to monomer
 - e-withdrawing substituent ~ anionic polym'n
 - e-donating substituent ~ cationic polym'n
 - radical? ~ not selective, most monomers
- mechanism
 - initiation

propagation

- <u>no</u> bimolecular termination
 - living polym'n; in anionic, hardly in cationic
 - termination by impurity
- narrow MWD
 - living nature + fast initiation

Coordination polym'n

- □ for stereoregular polymer synthesis
- tacticity
 - isotactic, syndiotactic ~ stereoregular
 □ crystallizable → higher strength
 - atactic ~ not stereoregular

Fig 1.46 p59

Coordination polym'n for

- HDPE ← Radical polym'n of E gives only LDPE.
- α -olefin like PP \leftarrow autoinhibition in radical polym'n

Table 1.1 p22-23 PE, PP, PVC, PMMA, PS, --- ~ general purpose plastics

Polyethylene (PE) $- (-CH_2 - CH_2)_n$

Poly(vinyl chloride) (PVC) $-(-CH_2 - CH_{-})_n$

Polytetrafluroethylene — $(-CF_2 - CF_2)$

Poly(methyl methacrylate) (PMMA) $\begin{array}{c} --(-CH_2 - CH_3 \\ --(-CH_2 - CH_3 - CH_3 \\ --(-CH_2 - CH_3 - CH_3 - CH_3 - CH_3 \\ --(-CH_2 - CH_3 - CH$

Polyisobutylene (PIB) $- (-CH_2 - CH_3)_n - (-CH_2 - CH_3)_n - (-CH_2 - CH_3)_n - (-CH_2 - CH_2 - CH_3)_n - (-CH_2 - CH_2 - CH_3)_n - (-CH_3 - CH$

Step polym'n

by rxn of functional groups

step polymers

- polyester, polyamide, PU --- Table 1.2
- PC, PEEK --- [engineering plastics] Table 1.3
- higher performance (than chain polymers)
 - due to crystallizability
 - due to stiffer backbone, esp with aromatic

ester (-C-O-), amide (-C-NH-), imide (
$$-N'$$
), urethane (-O-C-NH-),
O O O O
sulfide (-S-), ether (-O-), carbonate (-O-C-O), and sulfone (-S-) linkages.

mostly chain polym'n

PPrO and PA6 are classified as condensation polymers, ----- p34

- chain or addition polymer(ization)
- step or condensation polymer(ization)
- **ignore**

Supramolecular polym'n

polym'n through secondary bonding

- like (multiple) H-bonding
- stable yet reversible chain
 - high mechanical property and good processability

Copolymers

homopolymer, copolymer, terpolymer

- types
 - random
 - alternating
 - block
 - graft
- morphology
 - 1-phase vs 2-phase
- property
 - average vs composite
 SAN vs SBS

