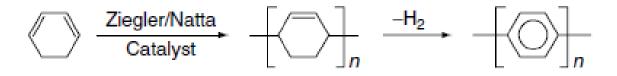
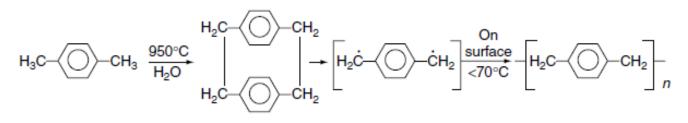
Chapter 5

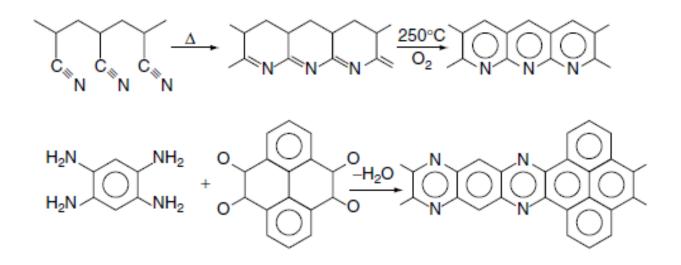

Polymers in Special Uses

high-Temp, fire-resistant, LCP, conductive, electroactive, electrolytes, photoresist, degradable, ionic, hydrogel, membrane polymers nanocomposites

High temperature polymers


thermal stability vs heat resistance

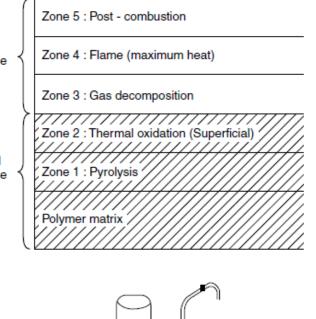
- thermal stability ~ degradation Temp ~ T₅ etc
 bond strength ~ weakest bond
- heat resistance ~ use Temp ~ T_q or HDT
 - chain stiffness, intermol interaction
 - □ MW, X_c, M_c
- usually, related
- (wholly) aromatic polymers
 - poly(p-phenylene)

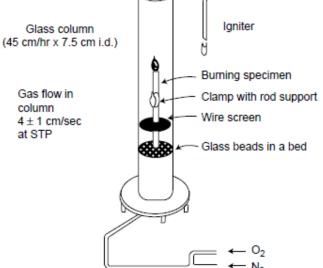


Ch 5 Sl 3

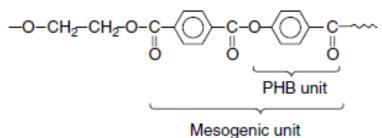
poly(p-xylene)

- aramid, PI, PBI, PSF, PEEK, ---
- ladder polymers

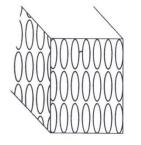


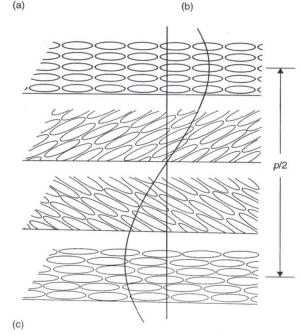

Fire-resistant polymers

burning

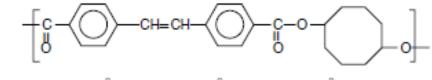

Ch 5 Sl 4

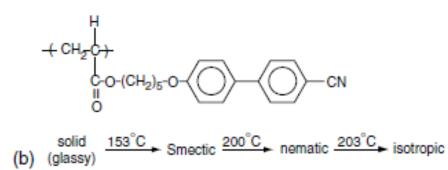
Gas phase ■ pyrolysis (1) \rightarrow gas (2,3) + char • combustion (4) \rightarrow heat (5) Solid phase $LOI = \frac{[O_2]}{[O_2] + [N_2]} \times 100$ Table 5-2 p597 □ for fire resistance high thermal stability column at STP Iow H/C ~ ring also related halogen

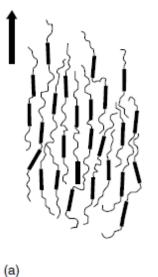


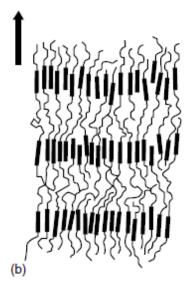

- □ LC ~ mesophase ~ KL betw KS and IL
- thermotropic, lyotropic
- smectic, nematic, cholesteric (chiral)
- mesogen ~ rod or disc
 - two or more cyclic units

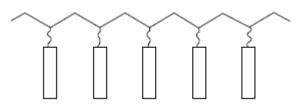
- observation of LC behavior
 - DSC ~ T_{tr}
 - POM ~ texture ~ type
 - XRD ~ type and number of phases



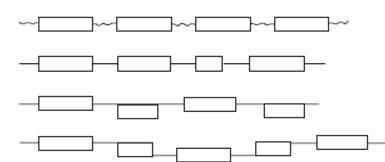


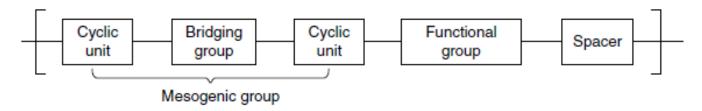

LCP


- main-chain LCP
- side-chain LCP



(a) (crystal) (a) (crystal) 257°C → Smectic 282°C → nematic 295°C → isotropic



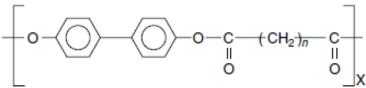


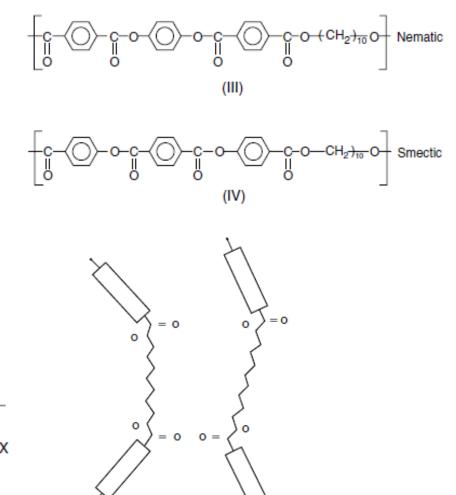
Main-chain LCP

- structure
 - all-mesogen
 - T_m too high
 - Iyotropic only
 - modifications ~ spacer

general structure Table 5.3

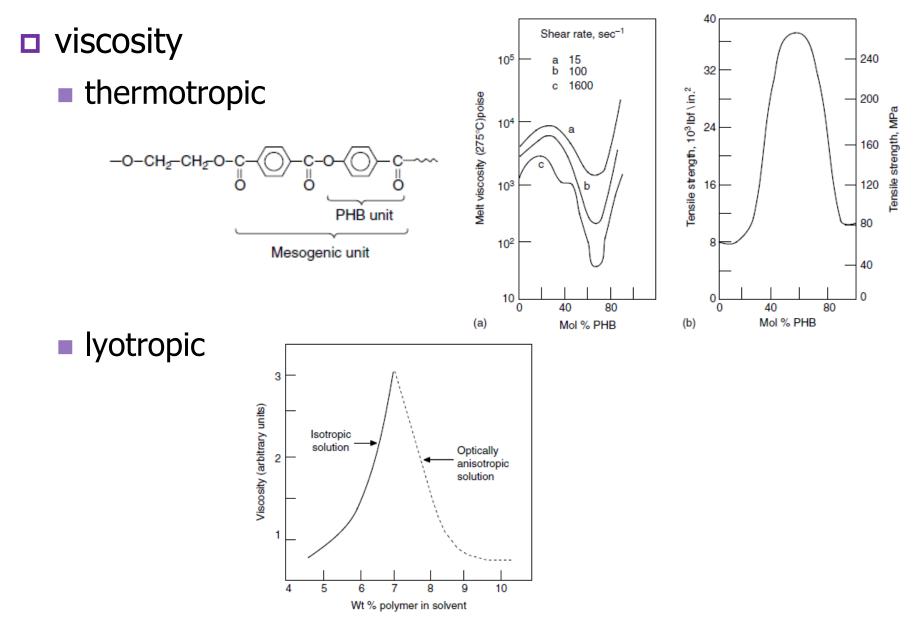
-NH-⟨())


⊢NH−C− ∥


phase behavior

- nematic usual
- smectic
 - LCP with long spacer
 - in some special cases

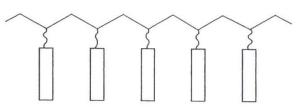
even-odd effect

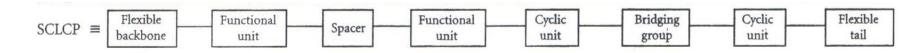

higher T_m, T_i for even
 nematic (o)/smectic (e)

n = 7 *n* = 8

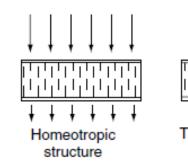
properties

high thermomechanical property

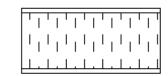

- stiff and self-reinforcing
- processability
 - Iow viscosity ~ precision product
 - \square low ΔH_c and time for Xtallization \sim low cycle time
 - can be highly-filled

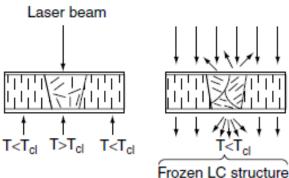

applications

- fiber
- (precision) electronics parts
- PCB replacing epoxy

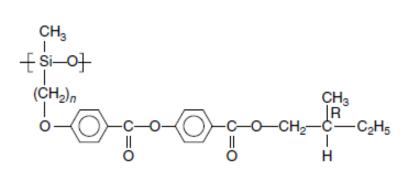


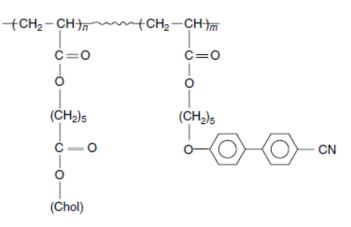
structure Table 5.4 and 5.5

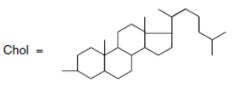


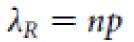

- \square phases ~ nematic, smectic, cholesteric (chiral)
- applications
 - alignment
 - homogeneous vs homeotropic
 - not for display
 - optical storage

Laser beam

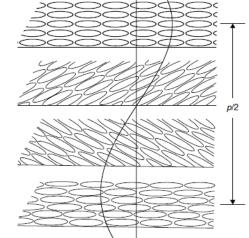


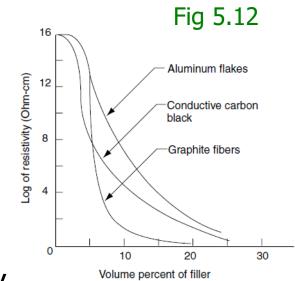



Ch 5 Sl 11

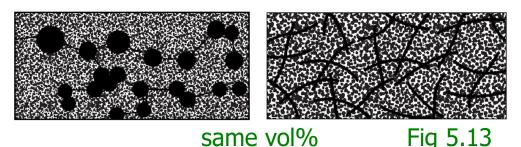

Cholesteric LCP

contains chiral center




% Chol	$T_{\rm g}$ (°C)	T_{i} (°C)	$\lambda_{\rm R} (\rm nm)$
34	10	32	850
40	10	39	850 660
40 55 65	13	40	555
65	13	65	500

(monochromatic) optical film


Filled conductive polymers

- > conductive [conducting] polymers
 - > filled conductive polymers
 - > inherently conductive polymers
- conductive plastics
 - dispersing conductive materials
 - Al, Fe, C, GF
 - not Cu (oxidize)

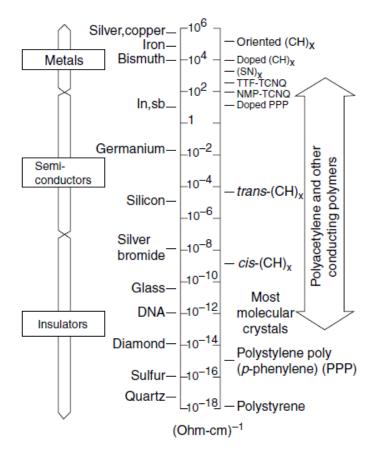
Ch 5 Sl 13

- for electrical a/o thermal conductivity
 - metalloplastic = high electrical (< 1 ohm cm) and thermal (> 10 times normal) conductivity
- fiber (of high AR) more effective than particle

- if only for thermal conductivity, continuous phase <u>not</u> necessary
 - electrical insulator with high thermal conductivity possible
 - high thermal conductivity to shorten cycle time
- conductive coating
 - brushing, plating, in-mold, ---
 - for some EMI shielding
- conductive rubber
 - silicone/carbon black popular
 - connector, electrode, tire (leak off static electricity)

EMI shielding

- shielding effect, $\alpha(dB) = 20 \log_{10}(E_b/E_a)$ Table 5.8
 - **99%** shielding = α of 40 dB
- steel fiber ~ most effective shielding
 - only 1 vol% $\rightarrow \alpha = 50 \text{ dB} \approx 1 \text{ (ohm cm)}^{-1} = 1 \text{ S/cm}$
- carbon black ~ most cost effective
 - □ amorphous C ~ .01; graphite fiber ~ 300 S/cm
 - need higher conc'n than metals
 - disadvantage ~ color, low IS
 - sandwich molding


□ stealth material radar absorbent materials [RAM]

- radar stealth = no reflection + deflecting radar
- no reflection by
 - \square absorbing radar \sim materials w/ high ϵ'' and μ'' at 3-30 GHz
 - ε = permittivity [dielectric constant]
 - μ = (magnetic) permeability
 - blacking-out net reflection ~ reflection by coat and metal cancels each other
- ferrite dispersed in binder [painting polymer]

Inherently conductive polymers

Ch 5 Sl 17

- \square polymers with π -conjugation
 - insulating/semi-conducting
 - doped ~ semi- to conducting

Polymer	Structure	Doping materials	Approximate conductivity (S/cm)
Polyacetylene	(CH) _n	I ₂ , Br ₂ , Li, Na, AsF ₅	10,000ª
Polypyrrole	$\{ \!\! \langle \! \rangle \!\! \rangle$	BF4 ⁻ , ClO4 ⁻ , tosylate ^b	500~7500
Polythiophene	{ [}	BF4", ClO4", tosylate ^b , FeCl4"	1000
Poly(3-alkylthio- phene)	₩Ĵ.	BF4 ⁻ , CIO4 ⁻ , FeCl4 ⁻	1000~10,000 ^a
Polyphenylene sulfide	(0-)	AsF ₅	500
Polyphenylene- vinylene	(0~) <u>,</u>	AsF ₅	10,000 ^a
Polythienylene- vinylene	<u>K</u> Z~Vj	AsF_5	2700ª
Polyphenylene	(©)	AsF ₅ , Li, K	1000
Polyisothianaphthene	×.	BF4 ⁻ , ClO4 ⁻	50
Polyazulene	B	BF4 ⁻ , ClO4 ⁻	1
Polyfuran	₩3 <u>4</u>	BF4 ⁻ , ClO4 ⁻	100
Polyaniline	(0+)	нсі	200ª

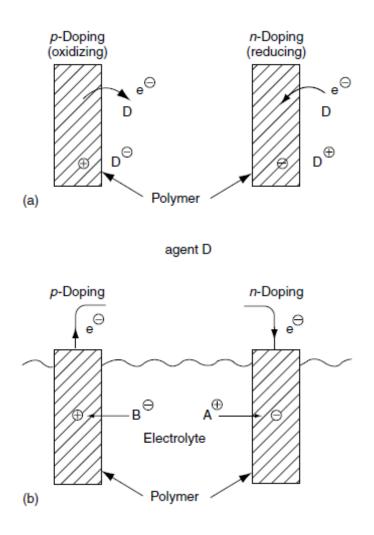
^a Conductivity of oriented polymer, ^b p-Toluenesulfonate.

Ch 5 Sl 18

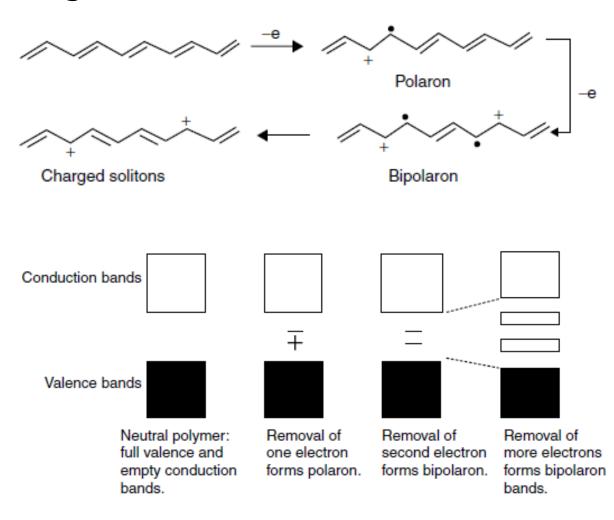
doping process

- chemical
- electrochemical
- ion implantation
- photochemical

p/n-doping

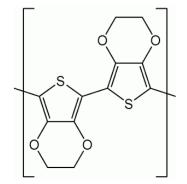

p-doping ~ oxidation

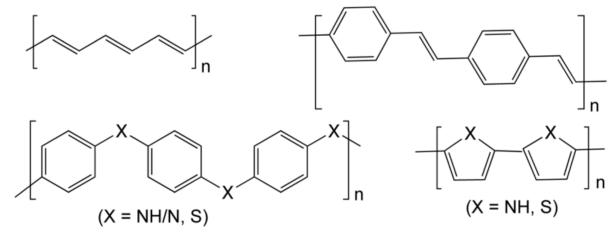
 $Polymer + X = (Polymer)^{n+} + X^{n-}$


- □ Br₂, I₂, AsF₅, HClO₄, --
- for most conducting polymers
- n-doping ~ reduction

 $Polymer + M = (Polymer)^{n-} + M^{n+}$

metals




conducting

CPs

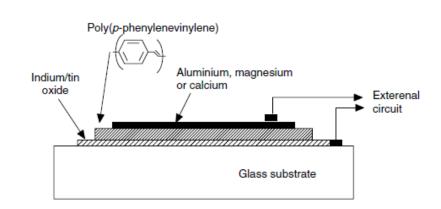
- polyacetylene
- PPP, PPV
- PPS
- PPy, PT, PEDOT, PANI
- modified
- blend/composite

applications

rechargeable battery [secondary battery]

cf> lithium secondary batteries

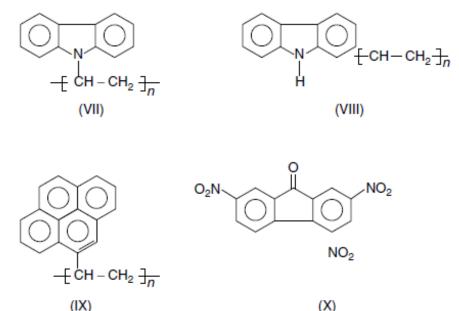
- LIB ~ Li M oxide/liquid electrolyte/carbon
- LIPB ~ Li M oxide/polymer electrolyte/carbon
- LPB ~ Li M oxide/polymer electrolyte/Li metal
- CP as electrode(s) ~ light wt, easy to process, but low energy and charge/discharge efficiency


• Fig 5.23-25 and Table 5.11

- electrochromic device [ECD]
 - color change doped/undoped
 - all-solid, low power consumption, wide viewing angle
 - slow response (doping-undoping)
 - display, smart window

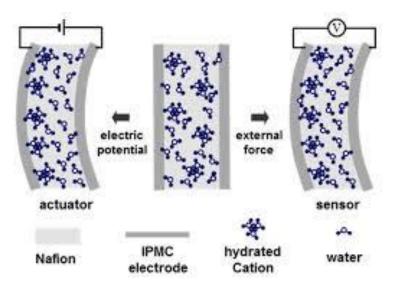
sensors

LED


- change in conductivity by chemical, pH, humidity, biomolecule
 - e.g., nucleophiles cause decrease in conductivity
- by interaction betw dopant and environment

- electrostatic discharge
- solar cell, etc

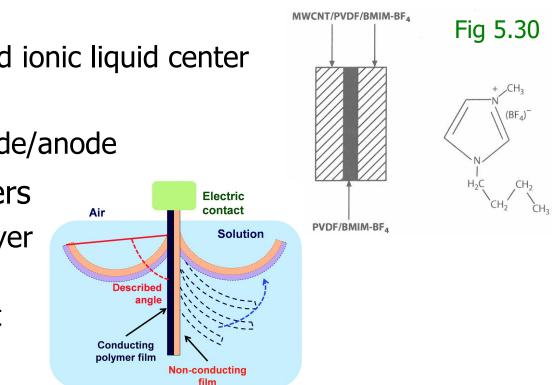
Photoconductive polymers


- photoconduction ~ change in the electrical conductivity by absorbing radiation
- polymers with large aromatic side group
 - helical conformation with parallel side group
- PVCz with TNF popular
 - TNF for modulating (360 to 550 nm)
- xerography
 - coated on the drum
 - uniformly charged
 - selectively discharged
 - attract toner and printing

Ch 5 Sl 23

Electroactive polymers [EAP]

- > change in size a/o shape by electric field
- > polymer actuator/sensor
- > ionic, electronic
- ionic EAP
 - ionic polymer-metal composites [IPMC]
 cation (colvent meyors to cathodo)
 - cation/solvent moves to cathode

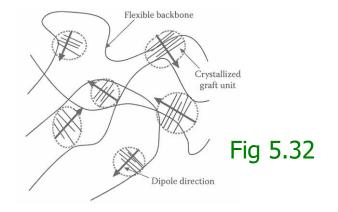

Ch 5 SI 24

□ ionic EAP (cont'd)

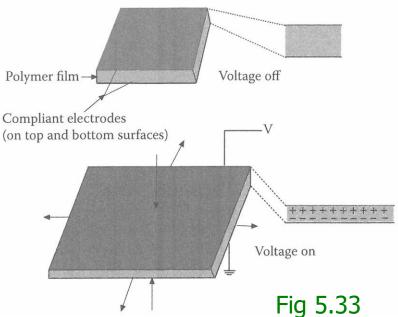
- ionic polymer gel
 - crosslinked ionomer
 - electric field \rightarrow H⁺ moves in/out \rightarrow actuation

CNT

- polymer supported ionic liquid center
- CNT as electrode
- ions moves cathode/anode
- conductive polymers
 - CP/insulating bilayer
 - actuation by counter ion in/out



electronic EAP


ferroelectric polymers

ferro/para/diamagnetic ferro/para/dielectric permanent/temporary/small

- PVDF, odd # PA, and copolymers
- ferro-paraelectric transition at Curie Temp \rightarrow change in lattice parameter \rightarrow actuation
- polymer electrets
 - porous PP, fluoro, PET electret [electric magnet]
 - converse of piezoelectric = change in thickness by voltage
- electrostrictive polymers
 - PVDF-based or LC polymers
 - polymer (nano)crystals
 - align by electric field
 - main- or side-chain

electronic EAP (cont'd) dielectric elastomers flexible electrodes (like CB) attraction betw electrodes repulsion on electrodes PDMS, PU, acrylates large strain, force; high V

