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Chapter 3 Crystal Interfaces and Microstructure

1) Interfacial Free Energy

2) Solid/Vapor Interfaces

3) Boundaries in Single-Phase Solids

4) Interphase Interfaces in Solid (α/β)

5) Interface migration
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3.4 Interphase Interfaces in Solids
Interphase boundary - different two phases : different crystal structure

different composition

coherent, 

semicoherent

incoherent

Perfect atomic matching at interface

 (coherent) = ch  (coherent) ~ 200 mJM-2

γ

0.25 δ
δ=4:  1 dislocation per 4 lattices

semi
   ( ) ch stsemicoherent

st → due to structural distortions 
caused by the misfit dislocations

(semicoherent) ~ 200~500 mJM-2

1) δ > 0.25

2) different crystal structure (in general)

 (incoherent) ~ 500~1000 mJM-2

Complex Semicoherent Interfaces
Nishiyama-Wasserman (N-W) Relationship Kurdjumov-Sachs (K-S) Relationships

Contents for previous class

D    → Strain field overlap

→ cancel out

No possibility of good matching across the interface

(The only difference between these two is a rotation in the closest-packed planes of 5.26°.)

The degree of coherency can, however, be greatly increased if a macroscopically irrational interface is formed.
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Lowest total interfacial free energy 
by optimizing the shape of the precipitate and its orientation relationship

+

different composition

Fully coherent precipitates

Incoherent inclusions

ch ch ch
VVolume Misfit

V


 

Chemical and structural interfacial ECoherency strain energy 

Lattice misfit +

i i SA G minimum  

22 ( / )
3SG V f c a    24SG V   (If ν=1/3)

Fully coherent precipitates Incoherent inclusions

3.4 Interphase Interfaces in Solids

“Coherency	loss“
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Phase transformation = Interface creation & Migration

Heterogeneous Transformation  (general):

Nucleation (interface creation) + Growth (interface migration)

Nucleation barrier    Ex. Precipitation

Homogeneous Transformation: PT occurs homogeneously throughout the parent phase.

Growth-interface control

No Nucleation barrier    Ex. Spinodal decomposition (Chapter 5)

* Types of Interface                                      Types of transformation

- Glissile Interface: Athermal, Shape change           Military transformation

- Non-Glissile Interface: Thermal,                         Civilian transformation
Random jump of individual atoms: extremely sensitive to temp. 
~ similar way to the migration of a random high angle GB

Dislocation gliding

- most of transformation product is formed during the growth stage 
by the transfer of atoms across the moving parent/product interface.

- at certain sites within metastable alpha phase → new beta phase = Nucleation

parent and product phases during trans.

3.5. Interface Migration

Order-disorder transformation
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Classification of Heterogeneous (Nucleation and Growth) Transformation

exception) bainite transformation: thermally activated growth/ shape change similar
to that product by the motion of a glissile interface

(need to additional research)
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Q:	What	is	the	structure	of	interface
between	liquids	and	crystals?
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2) Solid /Liquid Interfaces: consequences for the structure and energy of the interface

Faceted interface

Diffusion interface (non-faceted)
: most metals, Lf/Tm ~ R (gas constant)

Lf/Tm> 4R

>
>

Rather narrow transition zone approximately one atom layer thick
~ same as solid/vapor interfaces, i.e., atomically flat close-packed interface

Rather wide transition zone over several atom layers
~automatically rough & diffuse interface 

: some intermetallic compounds, elements such as Si, Ge, Sb, and most nonmetals

Interphase Interfaces in Solid (α/β)

Fig. 3. 63 Solid/liquid interfaces: (a) atomically smooth, (b) and (c) atomically rough, or diffuse interfaces.
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Primary Ag dendrite 
in Cu-Ag eutectic matrix

β’-SnSb intermetallic compound 
in Sn(Sb) solid solution

Non-faceted
- Free E ~do not vary with 
crystallographic orientation

- γ-plot ~ spherical

Faceted
- Strong crystallographic effects
- Solidify with low-index close-packed facets
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Primary Ag dendrite 
in Cu-Ag eutectic matrix

β’-SnSb intermetallic compound 
in Sn(Sb) solid solution



Turnbull’s	solid‐liquid	interface

Solid state physics v47, 1 (1994)

Supercooling

Turnbull’s insight: Liquid orders substantially near a crystal surface due to 
entropy decreasing caused by the crystal-melt interfacial tension

What is the structure of interface between liquids and crystals?
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Turnbull’s	Insight	for	Supercooling

 How does the liquid metals resist on the crystallization?
What the origin of high nucleation barrier against the crystallization?  

Liquid Crystal

Easy
nucleation

Microcrystalline structure for liquid metals
–Same short range order with crystals!

,2
*    

g3
16 =W

sl

3





  
T

TH
 =g f

sl


 
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* Broken bond model → calculation of the E of solid/ liquid interface

at equilibrium melting temp.

γSV > γSL + γLV
Showing the origin of the solid/ liquid 
interfacial energy, γ

γSL ≈ 0.45 γb
for the most metals 

(= 0.15γSV)

0.5Lf / Na → 0.45Lf / Na (엔트로피 효과로 감소)
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Although  nucleation  during  solidification  usually requires  
some  undercooling,  melting  invariably occurs at the 
equilibrium melting temperature even at  relatively  high  rates  
of  heating.

Why?

SVLVSL  

In general, wetting angle = 0             No superheating required!

4.1.4. Nucleation of melting

(commonly)



Liquid Undercooled Liquid Solid

<Thermodynamic>

Solidification:    Liquid Solid

• Interfacial energy ΔTN

Melting:      Liquid Solid

• Interfacial energy

SVLVSL  

No superheating required! 

No ΔTN

Tm 

vapor

Melting and Crystallization are Thermodynamic Transitions
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Interface controlled growth            Diffusion controlled growth

Q:	What	is	the	role	of	interface	migration	
on	phase	transformation	?
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Phase transformation = Interface creation & Migration

Heterogeneous Transformation  (general):

Nucleation (interface creation) + Growth (interface migration)

Nucleation barrier    Ex. Precipitation

Homogeneous Transformation: PT occurs homogeneously throughout the parent phase.

Growth-interface control

No Nucleation barrier    Ex. Spinodal decomposition (Chapter 5)

* Types of Interface                                      Types of transformation

- Glissile Interface: Athermal, Shape change           Military transformation

- Non-Glissile Interface: Thermal,                         Civilian transformation
Random jump of individual atoms: extremely sensitive to temp. 
~ similar way to the migration of a random high angle GB

Dislocation gliding

- most of transformation product is formed during the growth stage 
by the transfer of atoms across the moving parent/product interface.

- at certain sites within metastable alpha phase → new beta phase = Nucleation

parent and product phases during trans.

3.5. Interface Migration

Order-disorder transformation
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Classification of Nucleation and Growth Transformation

exception) bainite transformation: thermally activated growth/ shape change similar
to that product by the motion of a glissile interface

(need to additional research)
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1) Interface control

2) Diffusion  control

Distance

C
om

po
si

tio
n

* Civilian Transformation
Same composition between parent and product
(Ex. α→γ transformation in pure iron)

The new phase will be able to grow as fast as the atoms
can cross the interface. : interfacial reaction velocity dominant

Different composition between parent and product
(Ex. The growth of the B-rich phase into the A-rich α-phase)

Growth of the new phase will require long-range diffusion
Growth rate: governed by the rate at which lattice diffusion 
can remove the excess atoms from ahead of the interface.

α

β

3) Mixed  control: interface reaction = diffusion process

3.5. Interface Migration
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Fig. 3.67 Interface migration with long-range diffusion
; the migration of interface separating two phases of different composition

3.5.1. Diffusion-Controlled and Interface-Controlled Growth

(a) Composition profile across the interface

(b) The origin of the driving force for 
boundary migration into the α-phase ΔμB

i

(c) A schematic molar free energy diagram
showing the relationship between ΔμB

i , Xi , X0

, 
α/β 계면에 ΔμB

i 가 생기는 원인

1)  Initial composition of A-rich α phase X0

2)  Concentration B in the α phase adjacent to the inteface Xi
→  B concentration in α : X0 →	Xi

3) For growth to occur the interface, composition must be
greater than the equilibrium concentration Xe.

A net flux of B atoms
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n
V

m

GG per unit volume of
V


 

0V eG X where X X X     

Total Free Energy Decrease per Mole of Nuclei

Driving Force for Precipitate Nucleation

G0

  BBAA XXG  1

  BBAA XXG  2

12 GGGn 

For dilute solutions,

TXGV 

: Driving force for phase transformation of system

: Decrease of total free E of system
by removing a small amount of material 
with the nucleus composition (XB

β) (P point)

: Increase of total free E of system
by forming β phase with composition XB

β

(Q point)

: driving force for β precipitation

∝undercooling below Te

(length PQ)

GV


rG
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Fig. 3.67 Interface migration with long-range diffusion
; the migration of interface separating two phases of different composition

3.5.1. Diffusion-Controlled and Interface-Controlled Growth

(a) Composition profile across the interface

(b) The origin of the driving force for 
boundary migration into the α-phase ΔμB

i

(c) A schematic molar free energy diagram
showing the relationship between ΔμB

i , Xi , X0

, 
α/β 계면에 ΔμB

i 가 생기는 원인

1)  Initial composition of A-rich α phase X0

2)  Concentration B in the α phase adjacent to the inteface Xi
→  B concentration in α : X0 →	Xi

3) For growth to occur the interface, composition must be
greater than the equilibrium concentration Xe.

A net flux of B atoms
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By analogy with the migration of a high-angle GB (section 3.3.4), the net flux B

across the interface will produce an interface velocity v given by

13

11





molm

Jmol
Vm

i
B

m
i
B VMv / M = interface mobility, 

Vm = molar volume of the β phase


B

i
B JJ 

Steady state at interface,

Corresponding flux across the interface (negative sign_negative direction of flux along the x-axis)

Interface velocity of precipitate

(section 3.3.4) Kinetics of grain growth 

β α

A flux of B atoms toward the interface by the concentration gradient in the α phase
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13

11





molm

Jmol
Vm

i
B

1) If the interface mobility is very high, e.g. an incoherent interface, 


B

i
B JJ 

Steady state at interface,

2) When the interface has a low mobility, 

3) In the limit of a very low mobility, 

ΔμB
i 는 최대

Corresponding flux across the interface (negative sign_negative direction of flux along the x-axis)

A flux of B atoms toward the interface by the concentration gradient in the α phase
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ΔμB
i

~ max

ΔμB
i ~ 0
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In general,

the necessary long-range diffusion involves a great many atom jumps

while interface reaction essentially involves only one jump.

When two phases have a different composition,

All interface reactions should be very rapid in comparison to lattice diffusion, i.e., 

all growth should be diffusion controlled. (next page)
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If two phases with different compositions,
but the same crystal structure are separated 
by a coherent interface

Interface can advance by normal lattice 
diffusion involving vacancies.

No need for a separated interface reaction

Al-Cu ppt structures

(a) Bright-field TEM image showing G.P. zones, and (b) HRTEM image of a G.P. zone 
formed on a single (0 0 0 1)α plane. Electron beam is parallel to in both (a) and (b).

Ex) Diffusion control

Ex) GP zones/ semicoherent interface with misfit 
dislocation (vacancy creation and annihilation)
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In general,

the necessary long-range diffusion involves a great many atom jumps

while interface reaction essentially involves only one jump.

Accommodation factor (A_수용인자)
Probability that an atom crossing the boundary will accommodated on arrival at the new phase

Incoherent interfaces and diffuse interface solid/liquid interfaces,
as high-angle grain boundaries = value of A close to unity “diffusion control”

Coherent or semicoherent interfaces as well as 
smooth solid/liquid interfaces = low values of A      “Some degree of interface control”

When two phases have a different composition,

All interface reactions should be very rapid in comparison to lattice diffusion, i.e., 

all growth should be diffusion controlled. (next page)

In many cases ~ valid, but under certain conditions ~ insufficient
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A loop of Shorkley partial disl.

~ high E/ unstable configuration 
→ force back to its original position

1) When two phases forming a coherent or semicoherent interface have different crystal structures.

2) Solid/vapor as well as smooth solid/liquid interfaces ~ similar manner 

hcp phase growth by individual atomic jumps (i.e., so-called continuous growth) ~ very difficult
(very low accommodation factors and low mobility)

* A way of avoiding 
the difficulties of continuous growth

“Growth by ledge mechanism”

Facets: AB, CD, EF
Ledge: BC, DE

Growth direction: diffusion control

→	Problem of nucleation new ledges may often lead to a degree of interface control on the overall rate.

Ex) Interface control

Nucleating new ledges: Interface control
- heterogeneous nucleation

Fig. 3. 68 Problems associated with the continuous growth of coherent interfaces between phases with different crystal structures.

Fig. 3. 69 The ledge mechanism.

Coherent close-packed interface 
between fcc and hcp crystals
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Note that growth ledges are usually hundreds of atoms layers high.

The mechanism of interface migration can have important effects on 
the shape of second-phase inclusions. (section 3.4.2)
- if absence of strain E effect, equilibrium shape of a precipitate should be determined by 
a) the relative energies of the bounding interfaces (dominant)

ex) a partially coherent precipitate~disk or plate shape with an aspect ratio of γi / γc
b) (in practice) “relative rates” at which the coherent and incoherent interface can migrate

γ-plot

Fig. 3. 70 (a) Growth ledges at an Mg2Si plate in Al-1.5 wt% Mg2Si, solution treated 
and aged 2h at 350 ℃. Dark field micrograph.

(b) Schematic diagram of (a) showing ledges on Mg2Si plate.

성장 돌출맥의 층 두께는 보통 수백 원자층 두께

계면 E의 상대적 비

정합/ 부정합 계면의 상대적인 이동속도 차에 의해 형상 변화
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Classification of Heterogeneous (Nucleation and Growth) Transformation

exception) bainite transformation: thermally activated growth/ shape change similar
to that product by the motion of a glissile interface

(need to additional research)
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* Homework 3 : Exercises 3 (pages 186-188)

until 20th November (before class)

Good Luck!!
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Contents in Phase Transformation

(Ch1) Thermodynamics and Phase Diagrams

(Ch2) Diffusion: Kinetics

(Ch3) Crystal Interface and Microstructure

(Ch4) Solidification: Liquid  Solid 

(Ch5) Diffusional Transformations in Solid: Solid  Solid 

(Ch6) Diffusionless Transformations: Solid  Solid 

Background
to understand
phase 
transformation

Representative
Phase 
transformation



34

4 Fold Anisotropic Surface Energy/2 Fold Kinetics, Many Seeds

Solidification:      Liquid Solid



354 Fold Symmetric Dendrite Array

Solidification:      Liquid Solid
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• Nucleation in Pure Metals

• Homogeneous Nucleation

• Heterogeneous Nucleation

• Nucleation of melting

Contents for today’s class

Solidification:      Liquid Solid

< Nucleation >

< Growth >

• Equilibrium Shape and Interface Structure on an Atomic Scale

• Growth of a pure solid 1) Continuous growth
: Atomically rough or diffuse interface

2) Lateral growth 
: Atomically flat of sharply defined interface

• Heat Flow and Interface Stability

&
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Q:	Undercooling	of	
homogenous	vs	heterogenous	nucleation	?
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- casting & welding
- single crystal growth
- directional solidification
- rapid solidification

4.1.  Nucleation in Pure Metals
Tm : GL = GS

- Undercooling (supercooling) for nucleation: 250 K ~ 1 K

<Types of nucleation>
- Homogeneous nucleation - Heterogeneous nucleation

Solidification:      Liquid Solid



Electrostatic	levitation	in	KRISS

+

PSD	(x) PSD	(y)

HV	(z‐axis)

HV	(x‐axis)

HV	(y‐axis)

He‐Ne	laserHe‐Ne	laser

Heating	laser

Feedback

Feedback

T	:	~3000	oC
P	:	~	10‐7 Torr

KRISS	material	:	Dr.	G.W.Lee

ESPark Research 	Group
39
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Electrostatic Levitation: cooling curve of Vitreloy 1 system
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Q:	Homogenous	nucleation

(a) Driving	force	for	solidification,	ΔGv

(b) Calculation	of	ΔGr ,	r*,	ΔG*
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Driving force for solidification 

4.1.1. Homogeneous Nucleation

mT
TLG 



L : ΔH = HL – HS

(Latent heat)
T = Tm - ΔT

GL  =  HL – TSL

GS  =  HS – TSS

ΔG = Δ H -T ΔS ΔG =0= Δ H-TmΔS

ΔS=Δ H/Tm=L/Tm

ΔG =L-T(L/Tm)≈(LΔT)/Tm

V Variation of free energy per unit volume 
obtained from undercooling (ΔT)
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4.1.1. Homogeneous Nucleation

L
VLS GVVG )(1  SLSL

L
VL

S
VS AGVGVG 2

L
V

S
V GG ,

SLSL
S

V
L

VS AGGVGGG  )(12

SLVr rGrG  23 4
3
4



: free energies per unit volume

for spherical nuclei (isotropic) of radius : r
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r < r* : unstable (lower free E by reduce size)
r > r* : stable (lower free E by increase size)
r* : critical nucleus size

Why r* is not defined by Gr = 0?

r*                 dG=0
Unstable equilibrium

SLVr rGrG  23 4
3
4



Calculation of critical radius, r*

embryo nucleus

Gibbs-Thompson Equation

V

SL

G
r


 2

SLVr rGrG  23 4
3
4



22

23

2

3

)(
1

3
16

)(3
16*

TL
T

G
G

V

mSL

V

SL
















mT
TLG 


V

Critical ΔG of nucleation at r*
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Q:	How	do	we	define	TN?
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Fig. 4.5 The variation of r* and  rmax with undercooling T

→ Condition for nucleation: 

T↑ → r*  ↓
→ rmax↑

The creation of a critical nucleus ~ thermally activated process

of atomic cluster

* SL SL m

V V

2 2 T 1r
G L T
  

     
mT
TLG 



∆TN is the critical undercooling for homogeneous nucleation.

rN

The number of clusters with r* at T < TN is negligible.

①
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Formation of Atomic Cluster

At the Tm, the liquid phase has a volume 2-4% greater than the solid.

Fig. 4.4 A two-dimensional representation of 
an instantaneous picture of the liquid structure. 
Many close-packed crystal-like clusters (shaded) 
are instantaneously formed.

②
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Formation of Atomic Cluster

3 24 4 ,
3r V SLG r G r      

When the free energy of the atomic cluster with radius r is by

how many atomic clusters of radius r would exist in the presence
of the total number of atoms, n0? 

1 2 3 4 1m mA A A A A A     

1 2

2 1 exp Gn n
kT

 
  

 
2 3

3 2 exp Gn n
kT

 
  

 
3 4

4 3 exp Gn n
kT

 
  

 
 1

1 exp
m m

m m
Gn n

kT

 



 
  

 
1 2 2 3 1

1 exp
m m

m
G G Gn n

kT

         
  

 



1

1 exp
m

m
Gn n
kT

 
  

 

0 exp r
r

Gn n
kT
   

 
# of cluster 
of radius r

nr exponentially decreases with ΔGr

반지름 r인 구상의 군집체 수

Excess free E associated with 
the cluster of 1→2 atoms

embryo Nucleus
: no longer part of liquid

r ↑	→ ΔGr ↑
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radius

Gi
bb

s 
Fr

ee
 E

ne
rg

y

large driving force (large T)

Compare the nucleation curves 
between small and large driving forces.

r*r*       <

T ↓ → ΔGr* ↑ → r* ↑ →  nr ↓
small driving force (small T)

T↑ → ΔGr* ↓ → r* ↓ → nr ↑

Formation of Atomic Cluster

22

23

2

3

)(
1

3
16

)(3
16*

TL
T

G
G

V

mSL

V

SL
















0 exp r
r

Gn n
kT
   

 
# of cluster 
of radius r

ΔGr* ΔGr*   <
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no   : total # of atoms.
ΔGr : excess free energy associated with the cluster

k : Boltzmann’s constant

# of cluster of radius r

- holds for T > Tm /  T < Tm  and r ≤ r*

- nr exponentially decreases with ΔGr

Ex. 1 mm3 of copper at its melting point (n0: 1020 atoms)
→ ~1014 clusters of 0.3 nm radius (i.e. ~ 10 atoms)

→ ~10 clusters of 0.6 nm radius (i.e. ~ 60 atoms)

→  effectively a maximum cluster size, ~ 100 atoms
~ 10-8 clusters mm-3 or 1 cluster in ~ 107 mm3

Formation of Atomic Cluster

0 exp r
r

Gn n
kT
   

 

Apply for all r / r ≤ r* 
(∵ r	>	r*:	no	longer	part	of	the	liquid)

r ↑ → nr ↓
r ↓ → nr ↑
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Fig. 4.5 The variation of r* and  rmax with undercooling T

T↑ → r*  ↓
→ rmax↑

The creation of a critical nucleus ~ thermally activated process

of atomic cluster

* SL SL m

V V

2 2 T 1r
G L T
  

     
mT
TLG 



∆TN is the critical undercooling for homogeneous nucleation.

The number of clusters with r* at T < TN is negligible.

③
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4.1.2. The homogeneous nucleation rate - kinetics

How fast solid nuclei will appear in the liquid at a given undercooling?

C0 : atoms/unit volume
C* : # of clusters with size of C* ( critical size )

)exp(
*
hom

0 kT
GCC 



clusters / m3

The addition of one more atom to each of these clusters will convert them 
into stable nuclei.

)exp(
*
hom

0hom kT
GCfN o




nuclei / m3∙s 

fo ~ 1011 s-1: frequency ∝ vibration frequency energy 
of diffusion in liquid surface area (const.)

Co ~ typically 1029 atoms/m3
22

23

)(
1

3
16*

TL
TG

V

mSL













-
hom

*3 11 cm  when G ~ 78s kN T 

Homogeneous 
Nucleation rate

임계핵 크기의 cluster 수

한 개 원자 추가로 확산시 핵생성

Reasonable nucleation rate
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kTL
TA

V

mSL
2

23

3
16

}
)(

exp{ 20hom T
ACfN o 


A = relatively  insensitive to Temp.

Fig. 4.6 The homogeneous nucleation rate 
as a function of undercooling ∆T. ∆TN is the 
critical undercooling for homogeneous 
nucleation.

→ critical value for detectable nucleation
- critical supersaturation ratio
- critical driving force
- critical supercooling

How do we define TN?

where

4.1.2. The homogeneous nucleation rate - kinetics

2hom
1~
T

N


→ for most metals, ΔTN~0.2 Tm (i.e. ~200K)

Changes by orders of magnitude 
from essentially zero to very high 
values over a very narrow 
temperature range
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* Copper  Homogeneous nucleation 

ΔT = 230 K → r* ~ 10-7 cm < 4 * (Diameter of Cu atom)
If nucleus is spherical shape, 

V = 4.2 * 10-21 cm3 ~ 360 atoms (∵one Cu atom 1.16 *10-23 cm3)

“Typically in case of metal” ΔT * ~ 0.2 TE / σSL ~ 0.4 L
r* (critical nucleus for homogeneous nucleation) of metal ~ 200 atoms

But, if cluster radius ~ (only 4 * atom diameter),
“no spherical shape”
(large deviation from spherical shape)   →

→ Possible structure for the critical nucleus of Cu

: bounded only by {111} and {100} plane

- σSL may very with the crystallographic nature of the surface.

- The faces of this crystal are close to their critical size for
2D nucleation at the critical temp for the nucleus as a whole.
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Under suitable conditions, liquid nickel can be undercooled (or 
supercooled) to 250 K below Tm (1453oC) and held there indefinitely 
without any transformation occurring. 

Normally undercooling as large as 250 K are not observed.
The nucleation of solid at undercooling of only ~ 1 K is common.

The formation of a nucleus of critical size can be catalyzed by a suitable 
surface in contact with the liquid. → “Heterogeneous Nucleation”

Which equation should we examine?

)exp(
*
hom

0hom kT
GCfN o


*

( ) ( )

3 3 2
SL SL m

2 2 2
V V

16 16 T 1G
3 G 3 L T

  
     

Why this happens? What is the underlying physics?

Real behavior of nucleation: metal  ΔTbulk < ΔTsmall drop

Ex)               liquid

container
or

liquid

Solid thin film (such as oxide)


