Deposition of particles on a cylindrical collector by inertial impaction

“Inertial impaction occurs because sufficiently massive particles are unable
to follow curvilinear fluid motion and tend to continue along a straight path
where the fluid curves around the collector.”

Therefore, the basic approach to analyzing inertial impaction is to determine
the particle trajectory to see how the particles deviate from the streamline.

— Let us consider the trajectory of a particle initially at a distance y, from the
centerline. We assume the particles located within y, should be collected

and the particle located beyond y, can escape. Then we call the flow
streamline through vy, is the limiting streamline. Once y, has been determined,
the collection efficiency is just

n=2y,/D,
Also, let us assume this critical particle will be collected at the point (@ = 7z / 2)
d. d - . . .
y = > 4+ > (then, we automatically consider “interception”.
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Figure 7.20 Collection of a particle by a cylinder placed transverse to the flow carrying
the particles by the mechanisms of inertial impaction and interception.
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1% 1. Equation of motion
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— =U,; —U
dt
d?x dx
T +— =U,
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X(O):b dt :ux(b’yl):_uoo
t=0

Numerical analysis is needed.
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Approximate Simplified Analysis

1
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We know that y, and y, lie on the same stream line.

e — f 2
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D; a. 2a /D
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=P This equation gives us the relationship betweeny, and vy,
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We need to find the particular streamline on which a particle
starting at y, Is just captured at D/2+D/ 2.

d°x dx —
T—+— =U,
dt2  dt
2 —_
Ay dy o
dt2  dt
dx =
x(0) =b at_. u,
dy
YO=Y. Gt
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x(t)=b+ut

y(t) =y, —u,z(l-e" ") +uyt

Df T Dp — b/ U,z uyb .
¥, = + uyf(l—e X )-|-__ since (D; +D,) atx=0.
2 Uy y= )
t=-blu,
b D;
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Of course, this is not a rigorous analysis. Since this critical particle can be
collected at the different angular position.

Fig. 7.21

This figure clearly shows the effect of a.. For the larger value of a, the
streamline lie closer to the cylinder than at smaller a. Thus, at fixed Stokes
number, increasing o leads to increasing collection efficiency.

—We see that at a fixed value of a the collection efficiency increase with
iIncreasing Stokes no., eventually reaching a value of unity. Physically, a
convenient way to think of increasing Stk is to imagine the particle density
increasing at fixed size D,. Thus, as Stk increases the particles becomes
heavier and heavier and is less able to follow the streamline. A point is

eventually reached as Stk increases where all the particles contained in the
upstream projected area of the cylinder are collected.

In fact, we see that 77 becomes slightly larger than 1.0 reflecting the

interception contribution.
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Figure 7.21 Collection efficiency for combined impaction and interception for a cyl-
inder placed transverse to the flow as a function of Stokes number for D,/Ds = 0.1.

Particle Control

echanical & Aerospace Eng.




y/ D¢

1.0

0.5

Fluid streamline

Particle trajectory

| i I 1 | |

1

1.0
X/Df

A

Figure 7.22 Particle trajectory approach-
ing a cylinder in the Kuwabara flow field for
St=1,2=0.1,D,/D;= 0.1, and y, /D,
=0.2. .
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Fig. 7.25 N for combined impaction and interception

The limiting cases as Stk becomes smaller will represent the effect of pure
interception

77~(Dp/Df)2

At large enough Stk numbers, the efficiency curves for different values of

D,/D; converge as impaction become dominant mechanism with negligible
interception.

. It is interesting to compare the three mechanisms of
Fig. 7.26 o . . . ) . ) .
collection: Brownian Diffusion, impaction, interception

Fig. 5.07 The overall collection efficiency versus particle diameter

— exhibits a minimum in the efficiency between 0.1 4m and 1.0
“m in diameter. In this range, the particle is large enough so that
its Brownian diffusivity is too small to lead to a substantial
efficiency by that mechanism, and at the same time, it is too

small for its inertial to be large and inertial impaction can be also
small.
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Figure 7.25 Collection efficiency for combined impaction and interception for a cylinder placed
transverse to the flow as a function of Stokes number for D,,/D, = 0.001, 0.01, and 0.1 and @ =
0.001, 0.01, and 0.1.
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Figure 7.26 Collection efficiencies by Brownian diffusion and impaction/interception

for a cylinder placed transverse to the flow as a function of Stokes number fora = 0.1,
D,/D;= 0.1, and u,, = 1.0 cms™l. ‘
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Settling Chamber < gravitation effect

. Gravitational settling is perhaps the most obvious means of separating
particles from a flowing gas. A settling chamber is simply a large box or
diffuser in which the flow velocity becomes low so that particles have
sufficient time to settle down.

Settling chamber is used to remove usually large particles greater than 50 um,
As a precleaner removing large and possibly (harmful) particles prior to other
more precise collection devices or measuring instrumentation.
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(1) Laminar flow.
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We assume that particles are introduced uniformly across the entrance

to the channel at concentration No.

There will be a critical height y* such that a particle of d, located initially at
x=0, y=y* will be just settled down the plate at x=L, y=—H/2 .

This particle will be the last particle of d, collected in this chamber. Particles
that entered the chamber above y=y* will not be collected.
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The time needed for this last particle to settle down should be

Yy +H/2
Vt

t;

Let us determine the trajectory of this last particle.

Y = y* _Vtt

At time=t , the particle has x—direction velocity

y :gﬁ 1_(y —Vtt)z _dx

& > H/2 T dt
.-.J’tf%dtzl_
o dt
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We can finally obtain y*.

2V H/L=27 —ﬂZ
3u 3 o
implicit form
1 *
Z=—+Yy /H
> y /
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Collection efficiency
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(2) Turbulent flow settling chamber (for rectangular chamber)
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Detailed particle trajectory

calculation can be done numerically, but here, we want to make simplified
analysis to obtain some functional form of collection efficiency. This kind of
simple analysis is helpful to find which parameters govern the collection
efficiency.

So we assume in the bulk flow or in the core region, turbulent mixing is
vigorous enough so that particles can not settle. Also we can assume
uniform concentration of particles.

Only particles very near the surface will be deposited.

SO we assume there exists a thin layer where once a particle enters, it
settles to the surface.
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__» thin layer for deposition

dx ﬂ : fraction of particle deposition
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— design equation —
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