* Scattering of Light on Particulate media
* elastic independent isotropic
* inelastic dependent an isotropic

* blue sky, red sunset, rainbow, etc smog visibility

Center for Nano Particle Control

Seoul National U., Mechanical & Aerospace Eng.

• function of particle shape, material of particle (complex index of refraction m=n-ik), relative size compared to wavelength of photons, clearance between particles

→ generally assume spherical particles

(Rayleigh and Mie Scattering), Rayleigh-Debye-Gans theory for non-spherical aggregate

* independent scattering $c/d_p > 4$ or $f_v < 0.006$ (volume fraction)

* Rayleigh scattering : small particle (Lord Rayleigh(1871))

$$\frac{\pi d_p}{\lambda} < 0.3$$

$$\frac{\pi d_p}{\lambda} \approx 1$$

Mie Scattering (1908) (Gustav Mie : German physicist)

Scattered Power
$$\approx \frac{1}{\lambda^4}$$

Absorbed power $\approx \frac{1}{\lambda}$

(shorter wavelength photons scattered dominantly

Blue sky : blue (shorter scattered wavelength) Scattered into all directions Red sunset : large wavelength red rays are able to penetrate the atmosphere without attenuation

*plane of incidence : plane containing both the normal to interface and incident direction

*polarization of light

: horizontally polarized (E-field vector is parallel to the plane of incidence)

: vertically polarized (E-field vector is perpendicular to the plane of incidence)

*Let's consider a single particle illuminated by radiation with incident power per unit area $I_0(W/m^2)$ Total scattered power $P_{sca} = C_{sca} I_o$ Total absorbed power $P_{abs} = C_{abs} I_o$ Where C_{sca} and C_{abs} are scattering and absorption cross sections, respectively.

Center for Nano Particle Control

Seoul National U., Mechanical & Aerospace Eng.

$$P_{\text{extinction}} = P_{\text{sca}} + P_{\text{abs}}$$

$$C_{\text{ext}} = C_{\text{sca}} + C_{\text{abs}}$$
Power incident on the particle is $P_{\text{inc}} = AI_0$

Where A is the cross sectional area of particle

$$\therefore \frac{P_{abs}}{P_{inc}} = \frac{C_{abs}}{A} = Q_{abs}$$
: absorption efficiency factor

$$\therefore \frac{P_{sca}}{P_{inc}} = \frac{C_{sca}}{A} = Q_{sca} : \text{ scattering efficiency factor}$$

For an aerosol consisting of polydisperse particles effective scattering area

$$= dV \int_0^\infty C_{sca,\lambda}(d_p) dN(d_p)$$

dN(d_p) : #/cm³ between dp and d_p+dd_p = n(d_p)dd_p effective scattering area per unit volume = scattering coefficient [1/m]

$$\sigma_{s\lambda} = \int_0^\infty C_{sca,\lambda}(dp) dN(dp)$$

if monodisperse

 $\sigma_{s\lambda} = C_{sca,\lambda}N$

$$I = I_{0} \exp(-(\sigma_{s\lambda} + \alpha_{\lambda})x)$$

$$dI = -I \frac{C_{sca}}{A}$$

$$I = -I \frac{dV\sigma_{s\lambda}}{A} = -I \frac{dV\sigma_{s\lambda}}{A}$$

$$= -I dx \sigma_{s\lambda}$$

$$\frac{dI}{I} = -\sigma_{s\lambda} dx$$

$$\therefore \frac{I}{I_{o}} = \exp(-\sigma_{s\lambda}x)$$

Rayleigh scattering

Image on the second second

Center for Nano Particle Control

Seoul National U., Mechanical & Aerospace Eng.

FIGURE 16.1 Schematic diagram of an extinction-measuring apparatus.

Extinction-Scattering method for small particles Rayleigh scattering & extinction

$$f_{v} = \frac{1}{6}\pi d_{\overline{m}}^{3} N = \frac{\lambda}{6\pi} \frac{1}{E(\widetilde{m})} \overline{C_{ext}} N$$

Since $C_{ext}N = K_{ext}$ we can measure f_v from K_{ext}

Differential scattering cross-section for vertically polarized light

$$C_{vv}(\theta) \approx \frac{a^{6}}{\lambda^{4}} \left| \frac{m^{2} - 1}{m^{2} + 2} \right|^{2}$$

$$\overline{C(\theta)_{vv}} = \int_{0}^{\infty} C_{vv}(\theta) p(d_{p}) dd_{p} = \frac{1}{(2\pi/\lambda)^{2}} (\frac{\pi}{\lambda})^{6} \frac{M_{6}}{M_{0}} F(m) \sim d_{p}^{6}$$

$$\frac{M_{6}}{M_{0}} = \int_{0}^{\infty} d_{p}^{6} p(d_{p}) dd_{p}$$

$$\overline{C_{ext}} = \frac{\pi^{2}}{\lambda} \frac{M_{3}}{M_{0}} E(m) \sim d_{p}^{3}$$

$$\frac{C_{vv}}{\overline{C}_{ext}} = \frac{\pi^2}{4\lambda^3} \frac{M_6}{M_3} \frac{F(m)}{E(m)} \sim d_p^3$$

$$\therefore \frac{M_6}{M_3} = (\frac{\lambda^3}{\pi^3}) \{4\pi \frac{\overline{C_{vv}}}{\overline{C}_{ext}} \frac{E(m)}{F(m)}\}$$

$$\therefore (\frac{M_6}{M_3})^{\frac{1}{3}} = \frac{\lambda}{\pi} \{4\pi \frac{\overline{C_{vv}}}{\overline{C}_{ext}} \frac{E(m)}{F(m)}\}^{\frac{1}{3}}$$

$$d_{p_{63}} = (\frac{M_6}{M_3})^{\frac{1}{3}}$$

$$= (\frac{\int d_p^6 n(d_p) dd_p}{\int d_p^3 n(d_p) dd_p})^{\frac{1}{3}}$$

If we assume log-normal distribution,

$$\frac{M_0M_6}{M_3^2} = \{\frac{dp_{63}}{dp_{30}}\}^3 = \exp(9\ln^2\sigma_g)$$

If σ_{g} is known, then $d_{p_{30}}$ can be determined.

 $\sigma_g = 1 \rightarrow \text{monodisperse}$ $\sigma_g \approx 1.36 \rightarrow \text{self-preserving}$

absorbing particle only : carbon soot particle

* Mie Scattering

$$Q_{sca} = \frac{2}{x^2} \sum_{n=1}^{\infty} (2n+1)(|a_n|^2 + |b_n|^2)$$

$$Q_{ext} = \frac{2}{x^2} \sum_{n=1}^{\infty} (2n+1)R(a_n + b_n)$$

$$C_{sca} = \pi \frac{d_p^2}{4} Q_{sca} = \int_{4\pi} (diffrentia \ l \ cross \ sec \ tion) d\Omega$$

FIGURE 16.8 Mie intensity parameters versus scattering angle for water droplets (m = 1.33) having $\alpha = 0.8$, 2.0, and 10.0. Solid lines are i_1 and dashed lines are i_2 .

We can determine particle size distribution by measuring scattered lights at different angles \rightarrow angular dissymmetric light scattering method differential scattering coefficient

$$\sigma_{s}(\theta) = \int_{0}^{\infty} C_{vv}(x,\theta,m)n(v)dv$$

Assume independent scattering \rightarrow or single scattering

* Detected power of scattered light $S_{vv}(\theta) = \sigma_s(\theta) \eta \Delta V \Delta \Omega I_{0,vv}$ $= \sigma_s(\theta) SR(\theta)$ $SR(\theta)$ = system response (independent of size distribution or material)

(Example)

$$n(v) = \frac{M_0}{3\sqrt{2\pi} \ln \sigma_g} \exp\left[-\frac{\ln^2(\sqrt{v_g})}{18 \ln^2 \sigma_g}\right] \frac{1}{v}$$

 $M_{_0}, v_{_g}, \sigma_{_g}$: 3 unknowns

$$SR(\theta) \int_0^\infty C_{vv}(x,\theta) \frac{M_0}{3\sqrt{2\pi} \ln \sigma_g} \exp\left[-\frac{\ln^2(\frac{v}{v_g})}{18 \ln^2 \sigma_g}\right] \frac{1}{v} dv$$
$$= S_{vv}(\theta)$$

$$\frac{S_{vv}(\theta_1)}{SR(\theta_1)} = \int_0^\infty C_{vv}(x,\theta_1) \frac{M_0}{3\sqrt{2\pi}\ln\sigma_g} \exp\left[-\frac{\ln^2(\frac{v}{v_g})}{18\ln^2\sigma_g}\right] \frac{1}{v} dv$$
$$\frac{S_{vv}(\theta_2)}{SR(\theta_2)} = \int_0^\infty C_{vv}(x,\theta_2) \frac{M_0}{3\sqrt{2\pi}\ln\sigma_g} \exp\left[-\frac{\ln^2(\frac{v}{v_g})}{18\ln^2\sigma_g}\right] \frac{1}{v} dv$$

Optical Particle Counter (OPC):

- measures particle size distribution covering the size range 0.1-5 µm. The aerosol flow should be diluted to make sure that only one particle at a time is illuminated and scatters light to the detector. As each particle passes through the focused light beam, it scatters a pulse of light to the detector, which is converted to an electrical signal. Electronic pulse height (or area) analysis is used to interpret the pulse and direct a count to the proper size channel where the total count is obtained from the accumulated counts in each size channel.
- Optical particle counters are restricted by "coincidence errors" to the measurement of aerosols with relatively low number concentrations usually less than 10(4)/cc.
 Coincidence errors arise when two or more particles are in the measuring volume simultaneously and causing a spurious signal that leads to an underestimation of the particle number concentration and the overestimation of the particle size.

FIGURE 16.15 Diagram of a forward-scattering optical particle counter.

Instrument	Particle Size Range (µm)	Number of Channels	Scattering Angle Range (deg)	Sample Flow Rate (cm ³ /min)	Maximum Concentration ^a (cm ⁻³)
Climet ^b	日本 日本 日本	新居民总 品质	1997年4月1日月	6 . B. G. X. B. A.	11111111111
208°	0.3->20	16	15-105	28,000	90
7400	0.1->0.5	6	15-150	2800	14
7500	0.19->5.0	6	15–150	28,000	14
Hiac/Royco ^d					
236	0.12->6.0	16	35–120	280	3000
5100	0.25->10	6	60–120	28,000	7
PMS, Inc. ^e					
HS-LAS	0.065-1.0	32	35-120	2800	8000
LAS-X	0.09–3	16 ^f	35-120	60	17,000
LAS-X	0.12-7.5	16 ^f	35-120	280	3000
LPC-525	0.2->5.0	6	60–120	28,000	3.5

TABLE 16.3 Characteristics of Some Optical Particle Counters

^aConcentration for 10 % coincidence error. ^bClimet Instruments Co., Redlands, CA. ^cWhite light illumination; all others use laser light. ^dHiac/Royco, Menlo Park, CA. ^eParticle Measuring Systems, Inc., Boulder, CO. ^fFour ranges with 16 channels each.

FIGURE 16.16 Calculated response curves for six materials and manufacturer's calibration curve for model LAS-X[®] (PMS, Inc., Boulder, CO) optical particle counter.

Evolution of size, morphology, and concentration of particles

Particle growth

: size and morphology change, concentration change

- : spherical, non-spherical
- Evolution of size distribution of aerosol
- What makes the size distribution change?

- Convection, diffusion, external force → aerosol transport and migration → concentration change, but size and morphology remain
- Collision of Particles
 - : size, morphology and concentration changes
- Condensation and Evaporation
 - : size change
- Coalescence of particles
 - : morphology change
- Nucleation
 - : generation of particles

Nanoparticle synthesis-Flame Aerosol Synthesis

- **Pro** : high purity nanoparticles at high concentrations
- **Con** : difficulty in controlling the growth of nanoparticles : generation of aggregates when nanoparticles are synthesized at high concentrations.
 - "How can we synthesize small and unagglomerate sphere nanoparticles at high concentrations?"

Growth of SiO₂ Particles in a Flame

Generation of nanoparticles : Physical or chemical

- Homogeneous nucleation or chemical reactions
- Temperature and concentration fields

Growth of nanoparticles :

- Collision and coalescence (+residence)
- Temperature, concentration and fluid flow fields

Transport of nanoparticles :

- Diffusion, convection and thermophoresis
- Temperature, concentration and fluid flow fields

Deposition of nanoparticles :

- Diffusion and thermophoresis
- Temperature and concentration gradients

Description the morphology of non-spherical particles; $n_p = k_f (\frac{R_g}{d_p})^{D_f}$

(i) Mass fractal dimension, D_f

 $D_f = 3$: Compact agglomerate structure

 $D_f = 1$: Chain-like

Fractal dimension

$$N_p = k_f \left(\frac{R_g}{r_p}\right)^{D_f}$$

Image processing

 N_p : primary particle number per aggregate

$$N_p = (\frac{A_a}{A_p})^{1.1}$$
$$A_a = D_{binary}$$

$$A_p = \pi r_p^2$$

$$R_{g} : \text{ radius of gyration}$$

$$MR_{g}^{2} = \sum_{i} m_{i} (\vec{r}_{i} - \vec{r}_{cm})^{2}$$

$$D_{binary} R_{g,2}^{2} = \sum_{i} D_{binary,i} (\vec{r}_{i} - \vec{r}_{cm})^{2}$$

$$R_{g} \approx R_{g,2}$$

$$D_{f} : \text{ fractal dimension}$$

$$Slope of ln(N_{p}) - ln(R_{g} / r_{p}) \text{ plot}$$

Determination of Size and Morphology

- Competition between Collision and Coalescence of nanoparticles
 - If collision is faster than coalescence, aggregate form
 - If coalescence is faster than collision, spherical particle form

Cho and Choi, 2000, J. Aerosol Sci., 31, 1077

Fig.1 (a) Schematic of a coflow burner and coordinates (unit : mm) (ID : inside diameter, OD : outside diameter, t : thickness) (b) Burner exit configuration

(a) 30 cc/min

(b) 50 cc/min

c) 100 cc/min


```
d) 150 cc/min
```


(e) 200 cc/min

(f) 250 cc/min

(g) 300 cc/min

Effect of carrier gas flow rates on the morphology of SiO₂ particles in flames (inner shield He 3.0 l/min, H₂ 4.0 l/min, dilution He 2.0 l/min, O₂ 7.5 l/min, outer shield N₂ 7.0 l/min, carrier gas N₂ for SiCl₄, r = 0 mm, z = 5 mm)

Fig.6 Effect of carrier gas flow rate on particle diameters and fractal dimensions

 $(H_2 4.0 \text{ l/min}, r = 0 \text{ mm}, z = 5 \text{ mm}, \text{ carrier gas } N_2)$

0.1 µm

(a) H₂ 1.5 l/min, Q_{νν}= 1.048E-3 ±z3.59%

(b) H_2 2.0 l/min, Q_{yy} = 8.281E-4 ± 4.79%

(c) $H_2 2.5 \text{ l/min, Q sub vv} Q_{vv} = 1.750\text{E-}3 \pm 5.15\%$

____0.1 µm

(d) $H_2 3.0 \text{ l/min}$, Q_{vv} = 3.395E-3 ± 4.24%

(e) H₂ 4.0 l/min, Q_{vv} = 2.079E-3 ± 5.63%

(f) H_2 5.0 V min, Q sub vv Q_{vv} = 1.091E13 ± 7.18% Seoul National University Center for Nano Particle Control

Effect of H₂ flow rates on the morphology of SiO₂ particles in flames (inner shield He 3.0 l/min, dilution He 2.0 l/min, O₂ 7.5 l/min, outer shield N₂ 7.0 l/min, carrier gas N₂ 50 cc/min for SiCl₄, r = 0 mm, z = 30 mm, unit of Q_{vv} : [cm⁻¹ sr⁻¹])

Fig.11 Effect of H₂ flow rates on particle diameters and fractal dimensions (carrier gas N₂ 50 cc/min for SiCl₄, r = 0 mm, z = 30 mm)

Present Control Principle

Growth of SiO₂ Particles in a Flame

Aerosol Synthesis of Nanoparticles

 Nanoparticle crystallinity can be also controlled by heat transfer.

Seoul National University Global Frontier Center for Multiscale Energy Systems deposited lave

sintered particles

partially sintered

addredates

monomers

Laser irradiation in a particle generating flame can enhance coalescence by increasing particle temperature.

Aggregate

Sphere

By enhancing coalescence, collision probability can be greatly reduced

Much smaller and, at the same time, spherical nanoparticles at higher concentrations.

Seoul National University **Global Frontier Center**

Apply the Method to Crystalline TiO2 (Lee and Choi, 2002 J. Aerosol Science 33, 1-16)

 $TiCl_4 = 9.6 \times 10^{-4} \text{ mol/min}$ h_L= 13 mm h_P= 16 mm

Variations of Size, Number Concentration and Volume Fraction

	P = 0 W	P = 2405 W	Note
d _a (nm)	109.6	20.3	
d _v (nm)	58.7	20.3	Particle volume reduction by 24 times
N (#/cm ³)	1.77 x 10 ⁹	3.77 x 10 ¹⁰	Particle number increase by 21 times
$\mathbf{f}_{\mathbf{v}}$	2.71 x 10 ⁻⁷	2.49 x 10 ⁻⁷	

 d_a : projected area equivalent diameter d_v : volume equivalent diameter

Transformation of Crystalline Phase

- Surprising result : thermodynamically stable rutile has been transformed into metastable anatase.

Transformation of Crystalline Phase

(Lee and Choi, 2002 J. Aerosol Science 33, 1-16)

Laser irradiation in an H2/O2 flame with C2H2 precursor for crystallinity control of carbon nanoparticles

without laser irradiation 800 W

1500 W

TEM images of usual soot and shell shaped carbon particles after laser irradiation at 10 mm

Common Soot

Shell-shaped carbon nanoparticles (SCNP)

Synthesis of shell-shaped carbon nanoparticle(SCNP):

(Choi et al., Advanced Materials, 16, 1721, 2004)

Properties of SCNP

(Advanced Materials, 2004)

XRD

Field Emission Performance : Comparable to that of Carbon Nanotubes (Applied Physics Letters, 2004, and J. Applied Physics, 2004)

