

GENDER INNOVATIONS

Gender In Engineering Education

Pregnant Crash Test Dummies:

- Rethinking Standards and Reference Models

The Challenge

- Conventional seatbelts **do not** fit pregnant women properly (Weiss et al., 2001).
- Even a relatively minor crash at 56km/h (35 mph) can cause harm. With over **13 million women** pregnant (European Union and USA) each year, the use of seatbelts during pregnancy is a major safety concern (Eurostat, 2011; Finer et al., 2011).

Female crash test dummies

Method: Rethinking Standards and Reference Models

- The male body is often defined as the norm and serves as the primary object of study.
- In this case, crash test dummies were first developed to model the U.S. 50th percentile man (taken as the norm).
- This means that other segments of the population were left out of the discovery phase in design.
- Inattention to humans of different sizes and shapes may result in unintended harm.

Gendered Innovations:

- 1. Taking both women and men as the norm may expand creativity in science and technology. From the start, devices should be designed for safety in broad populations.
- 2. Analyzing sex has led to the development of pregnant crash dummies and computer simulations.

Gender In Engineering Education

Cases

Imaging equipment for organ toxicity models

Materials for protective shielding

If your team project is related to Gendered Innovations, there will be a 2% of extra grade

Emotional ICT industrial products

- Devices that are used in public
- There are various gender issues on the material of the product
- Grip, scratch, pattern of cover material, color, etc.

Difference between Blind touch and touch

INTRODUCTION TO COMPOSITE MATERIALS

Basic types of materials

- Metal
- Polymer
- Ceramic

• Where do we use engineering composites?

- Aerospace structures
 - Commercial 5 \sim 10 % weight
 - Business jet
 - Military
 - Satellite ~ 100% structural parts
- Sports goods : tennis rackets, golf shaft, ski, ...
- Automobile, ship
- Biomedical : hip joint

Why do we use composite?

- High E/ρ
- High σ/ρ
- Fatigue life
- Corrosion resistance

What is composite material?

- Two or more materials (metal, polymer and/or ceramic)
- Consist of two or more phases in macroscopic scale
 - Mechanical performance and properties are designed to be superior to those of the constituent materials acting independently
 - Phase ~ Constituent : Alloys (X)
 - Macroscopic scale(~fiber dimension) > Grain size(molecular dimension)
 - cf) Characteristic dimensions (general)

Classifications of materials

Homogeneous

- Independent of location
- Scale/characteristic volume dependent concept

Heterogeneous/inhomogeneous

Properties vary from point to point

Classifications of materials

Isotropic

- Properties are the same in all direction
- Infinite number of plane of material symmetry

Anisotropic

- Properties vary with direction
 - Zero <u>plane of material symmetry</u>(general anisotropy)

Orthotropic

- 3 mutually perpendicular plane of symmetry
- Most metal, ceramic and polymer: homogeneous and isotropic
- Continuous fiber reinforced composite : (Quasi) homogeneous and anisotropic material

- cf) Functionally graded material (FGM)
 - Continuously varied properties

Behavior of general anisotropic material under loading

Response of various materials under uniaxial normal and pure shear loading

Types of composite materials

Reinforcement

- Strengthen
- Fibers L/D >> 1 : "fiber reinforced composite"
- Particles L/D ~ 1 : "particulate composite"

Matrix

Polymer, metal and ceramic

cf) "Laminated composite"

- Thin layers bonded together
- Bimetal, clad metal and plywood

Particle

Why fibers?

Stronger than bulk

- Griffith's experiment (1920)
 - Glass fiber
 - Less (surface cracks) that would induce failure

Size effect

SiC whisker (0.5 micro meter dia.)

Multiwall CNT (20 nano meter dia.)

Other materials

Polymer fibers : highly aligned polymer chains

- Whisker
 - Single crystal: lower dislocation density than a polycrystalline solid

- L/D ~ 100
- Strongest reinforcing material
- Eg) Iron crystal theoretical strength: 200GPa

Iron whisker: 13GPa

Iron bulk : $0.5 \sim 0.7$ Gpa

Typical fiber materials

Typical fiber materials

- Glass
 - Cheap
 - Strong
 - Low modulus
- Boron
 - Tungsten/carbon substrate
- Carbon (graphite/pitch)
 - Aerospace
 - Cost is an important factor
- Kevlar, aramid, polyamid
- SiC (Silicone Carbide)
 - Very high temperature

Boeing 787

US design, manufactured around the world Higher efficiency – composite materials (40~55% weight)

Thermoset and thermoplastics

Thermoset	Thermoplastic
Ероху	Polyethylene
Polyester	Polystylene
Phenolics	Polypropylene
Bismaleimide (BMI)	Polyetherether ketone (PEEK)
Polyimide	Polyethersulfone
Undergo chemical change	Non-reacting
Process irreversible	Post-formable
Low viscosity	High viscosity
Long cure (~ 2hr)	Short process time
Lower process temperature	High process temperature
Good filler wetting	Rapid processing
Long process time	High process temperature
Restricted storage (Refrigeration)	Less chemical solvent (Resistance)

Classification by reinforcement

- Particulate filler
- Discontinuous fibers/whiskers
- Continuous fibers

Matrices

Functions of matrix

- Fiber alone can not support longitudinal compression
- Weight reduction (usually low density than fiber)
- Cost reduction (cheaper than fiber, m_{total}=m_{fiber}+m_{matrix})
- Protect fiber from environmental attack
 - eg. Ultra violet degradation, chemical attack

Type of matrices (tempertature)

Polymer

- Thermoset
 - Epoxy
 - 120°C/250°F for sporting goods, 175°C/350°F for aerospace
 - Polyimide
 - 370°C/700°F
- Thermoplastic
 - PEEK
 - Polysulfone (400°C/750°F)

Metal

- Aluminum, Magnesium (~800°C/1500°F)
- Titanium (900°C/1700°F)

Ceramic

- Glass, Si3N4, Al2O3, SiC (1000~1500°C)
- Carbon
 - C-C : Aircraft brake (~2600°C/4700°F)

Lamina and Laminate

Lamina (ply)

- A layer of unidirectional fibers or woven fabric
- Orthotropic material

Laminate

Made up of two or more laminas (plies)

Ply orientation

 Angle between reference x-axis & fiber orientation in a counter clockwise direction

Lamina and Laminate

Stacking sequence

- Configuration indicating the exact location or sequence of each ply
- From the bottom ply

Example of laminate designation

- Unidirectional: [0]
- Angle : θ [θ]
- # (number) : repeated group of plies
- s : symmetric
- T: total (to distinguish from symmetric)
- (over bar) : symmetric about mid-plane ply
- Ex: $[(0/\pm 45)_2]_s$

Stacking sequence

- [θ]
- Number : repetition of group
- s : symmetric
- T : total

• Q:

- $[(0/45)_2] \rightarrow [0/45/0/45]$
- $[(0/45)_2]_s \rightarrow [0/45/0/45/45/0/45/0]$
- $[(0/\pm 45)_2]_s \rightarrow [0/+45/-45/0/+45/-45/-45/+45/0/-45/+45/0]$

General material properties

General material properties

- Material constant : 1, 2, 3 direction
- Fiber volume ratio

$$v_f = \frac{v_{fiber}}{v_{comp}}$$

Analysis level

Analysis level

- Micro mechanics
 - Fiber & matrix
 - Fiber failure
 - Tensile, buckling and spliting
 - Local matrix failure (tensile/compression)
 - Interface failure
- Macro mechanics
 - Lamina level
 - Consider as homogeneous and anisotropic
 - Average stress, strength
- Lamination theory
 - Laminate level
 - CLT (Classical Lamination theory)
 - Structure level

Manufacturing processes

1. Autoclave : $20 \sim 100 \text{ psi } (138 \sim 689 \text{ kPa})$

2. Vacuum : 1 atm (14.7 psi, 101 kPa)

3. Hot press: plate

2. Filament winding

1. Pressure vessel

2. Shaft

3. Pultrusion

1. Simple cross section

4. Molding

- 1. SMC (Sheet Mold Compound)
- 2. BMC (Bulk Mold Compound)
- 3. RTM (Resin Transfer Molding)

5. Automation of layups

- 1. Tape layup
- 2. 3DP with short fiber

6. Honeycomb

1. High stiffness by geometric design

Elastic behavior of unidirectional lamina

Objectives

- Isotropic E, v: anisotropic elastic constant ?
- Transformation of σ , ϵ

Behavior of isotropic materials

Axial loading

$$\varepsilon = \frac{\sigma}{E}$$

$$\varepsilon_1 = \frac{1}{E}(\sigma_1 - \upsilon\sigma_2 - \upsilon\sigma_3)$$

Shear loading

$$\gamma = \frac{\tau}{G}$$

$$G = \frac{E}{2(1+\upsilon)}$$

E, v: only 2 elastic constant

Scalar, vector and tensor

Scalar (Scalae) – "stairs"

- Tensor of order zero
- A pure number
- Mass of car, temperature of body....

Vector (Vectus) – "carried"

- Tensor of order 1
- Magnitude & direction
- Position, velocity, force

Tensor (Tensus) – "tension", "stretched"

- Hamilton, Irish
- Tensor of order 2 and higher
- Stress inside solid, fluid, moment of inertia $(I_{XX} I_{XY})$

(1	2	3
4	5	6
7	8	9

Vector algebra

Dot (scalar) product

$$\overline{u} \cdot \overline{v} = \|\overline{u}\| \|\overline{v}\| \cos \theta$$

• u : map a vector to scalar

Cross (vector) product

$$\overline{u} \times \overline{v} = (\|\overline{u}\| \|\overline{v}\| \sin \theta)\overline{e}$$

$$\|\overline{u} \times \overline{v}\| = \|\overline{u}\| \|\overline{v}\| \sin \theta$$

u ×: map a vector to vector

Dyad (direct) product

$$[T] = \overline{a} \otimes \overline{b} \qquad (\overline{a} \otimes \overline{b}) \cdot \overline{v} = (\overline{ab}) \cdot \overline{v} = \overline{a}(\overline{b} \cdot \overline{v}) = (\overline{b} \cdot \overline{v}) \overline{a}$$

$$\overline{Tensor} \qquad \overline{Tensor}$$

Map v into a vector parallel to a

Indicial notation

A vector in 3D space

$$\overline{A} = A_1 \overline{e_1} + A_2 \overline{e_2} + A_3 \overline{e_3}$$
 Symbolic notation

$$e_1, e_2, e_3$$
: unit vector

$$\overline{A} = A_i \overline{e_i}$$
 Symbolic indicial

$$\overline{A} = A_i$$
 Indicial notation

Convention

- eq) i=1, 2, 3
- A repeated subscript implies summation over the range of permissible values
 - eg) dyadic product

$$\overline{A} = A_{1}\overline{e_{1}} + A_{2}\overline{e_{2}} + A_{3}\overline{e_{3}} \qquad \overline{B} = B_{1}\overline{e_{1}} + B_{2}\overline{e_{2}} + B_{3}\overline{e_{3}}
\overline{AB} = (A_{1}\overline{e_{1}} + A_{2}\overline{e_{2}} + A_{3}\overline{e_{3}})(A_{1}\overline{e_{1}} + A_{2}\overline{e_{2}} + A_{3}\overline{e_{3}})
= A_{1}B_{1}\overline{e_{1}}\overline{e_{1}} + A_{1}B_{2}\overline{e_{1}}\overline{e_{2}} + A_{1}B_{3}\overline{e_{1}}\overline{e_{3}}
+ A_{2}B_{1}\overline{e_{2}}\overline{e_{1}} + A_{2}B_{2}\overline{e_{2}}\overline{e_{2}} + A_{2}B_{3}\overline{e_{2}}\overline{e_{3}}
+ A_{3}B_{1}\overline{e_{3}}\overline{e_{1}} + A_{3}B_{2}\overline{e_{3}}\overline{e_{2}} + A_{3}B_{3}\overline{e_{3}}\overline{e_{3}}\overline{e_{3}}$$

$$A_{i}B_{j}\overline{e_{i}}\overline{e_{j}} \qquad A_{i}B_{j} \quad i,j=1, 2,3$$
indicial
$$A_{i}B_{j}\overline{e_{i}}\overline{e_{j}} \qquad A_{i}B_{j} \quad i,j=1, 2,3$$

$$A_{i}B_{j}\overline{e_{i}}\overline{e_{j}} \qquad A_{i}B_{j} \quad A_{i}B$$

- eg) dot product $\overline{v} \cdot \overline{e_i} = v_i \qquad \overline{u} \cdot \overline{v} = u_i v_i$
- eg) cross product

$$\overline{u} \times \overline{v} = \varepsilon_{ijk} u_i v_j \overline{e_k}$$

Permutation symbol
$$\varepsilon_{ijk} = \begin{cases} 1 & \text{if } (i, j, k) \text{ has even permutatio n} \\ -1 & \text{if } (i, j, k) \text{ has odd permutatio n} \\ 0 & \text{if two or more indices are zero} \end{cases}$$

$$\begin{cases} 1 & \text{if } (i, j, k) \text{ has even permutatio n} \\ -1 & \text{if } (i, j, k) \text{ has odd permutatio n} \end{cases}$$

Matrix

indicial

Coordinate transformation

Vector
$$\overline{A}$$

$$\overline{A} = A_1 \overline{e_1} + A_2 \overline{e_2} + A_3 \overline{e_3}$$

$$A'_1 = A_1 (\overline{e_1'} \cdot \overline{e_1}) + A_2 (\overline{e_1'} \cdot \overline{e_2}) + A_3 (\overline{e_1'} \cdot \overline{e_3})$$

$$\Leftrightarrow A'_1 = \alpha_{11} A_1 + \alpha_{12} A_2 + \alpha_{13} A_3$$

$$where \ \alpha_{ij} = e'_i \cdot e_j$$

$$A'_i = \alpha_{ij} A_j$$

 α_{ij} = Cosine of the angle between the i-th primed axis and the j-th unprimed axis

Coordinate transformation

1. 2-D transformation

$$\begin{aligned} \alpha_{11} &= \cos(X_1', X_1) = \cos \theta \\ \alpha_{12} &= \cos(X_1', X_2) = \cos(90 - \theta) = \sin \theta \\ \alpha_{21} &= \cos(X_2', X_1) = \cos(90 + \theta) = -\sin \theta \\ \alpha_{22} &= \cos(X_2', X_2) = \cos \theta \end{aligned}$$

$$\alpha_{ij} = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
$$\begin{bmatrix} X_1' \\ X_2' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

2. Transformation of 2nd order tensor

$$A'_{ij} = \alpha_{ik}\alpha_{jl}A_{kl}$$

Stress-strain in anisotropic material (3D)

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$
 C_{ijkl} : Stiffness matrix S_{ijkl} : Compliance matrix $\varepsilon_{ij} = S_{ijkl} \sigma_{kl}$ $i, j, k, l = 1, 2, 3$
$$\left[C_{ijkl} \right] = \left[S_{ijkl} \right]^{-1}$$

Number of elements in stiffness/compliance matrix	
81 general	
36 symmetry of stress-strain	$\sigma_{ij} = \sigma_{ji} \ \& \ arepsilon_{ij} = arepsilon_{ji}$
21 symmetry of material constant	$C_{ij} = C_{ji} \& S_{ij} = S_{ji}$
9 orthotropic case 3 mutually perpendicular planes of material symmetry	$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{12} & C_{22} & C_{23} \\ C_{13} & C_{23} & C_{33} \\ & & & C_{44} \\ & & & & C_{55} \\ & & & & & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{bmatrix}$
5 Transversely isotropic	$C_{12} = C_{13}$, $C_{22} = C_{33}$, $C_{44} = \frac{C_{22} - C_{23}}{2}$, $C_{55} = C_{66}$
2 isotopic	$C_{11} = C_{22} = C_{33}$, $C_{44} = C_{55} = C_{66} = \frac{C_{11} - C_{12}}{2}$ $E \& V$

Stress-strain in anisotropic 2D

Plane stress

no stress in thickness direction

$$\sigma_3 = \tau_{23}(\tau_1) = \tau_{13}(\tau_2) \cong 0$$

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ 0 \\ 0 \\ 0 \\ \tau_3 \end{pmatrix} = \begin{pmatrix} \mathcal{E}_1 \\ \mathcal{E}_2 \\ \mathcal{E}_3 \\ \mathcal{Y}_1 \\ \mathcal{Y}_2 \\ \mathcal{Y}_3 \end{pmatrix}$$

Stress-strain in anisotropic 2D

$$\sigma_{1} = \left(C_{11} - \frac{C_{13}C_{13}}{C_{33}}\right)\varepsilon_{1} + \left(C_{12} - \frac{C_{23}C_{13}}{C_{33}}\right)\varepsilon_{2}$$

$$= Q_{11}\varepsilon_{1} + Q_{12}\varepsilon$$

$$\sigma_{2} = \left(C_{12} - \frac{C_{13}C_{23}}{C_{23}}\right)\varepsilon_{1} + \left(C_{22} - \frac{C_{23}C_{23}}{C_{33}}\right)\varepsilon_{2}$$

$$= Q_{12}\varepsilon_{1} + Q_{22}\varepsilon_{2}$$

$$\tau_{3} = C_{66}\gamma_{3}$$

$$\varepsilon_3 = -\left(\frac{C_{13}}{C_{33}}\varepsilon_1\right) - \left(\frac{C_{23}}{C_{33}}\varepsilon_2\right)$$

In matrix form

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \tau_3 \end{pmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{21} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_3 \end{pmatrix}$$

$$\left(\begin{array}{c} \boldsymbol{\mathcal{E}}_{1} \\ \boldsymbol{\mathcal{E}}_{2} \\ \boldsymbol{\gamma}_{3} \end{array}\right) = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{21} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} \begin{pmatrix} \boldsymbol{\sigma}_{1} \\ \boldsymbol{\sigma}_{2} \\ \boldsymbol{\tau}_{3} \end{pmatrix}$$
© Sung-Hoon Ahn

How to measure the material constants?

Test 1

Test 2

$$Q_{11} = \frac{E_1}{1 - v_{12}v_{21}}$$

$$Q_{22} = \frac{E_2}{1 - v_{12}v_{21}}$$

$$Q_{12} = \frac{v_{21}E_1}{1 - v_{12}v_{21}} = \frac{v_{12}E_2}{1 - v_{12}v_{21}}$$

$$Q_{66} = G_{12}$$

$$\varepsilon_1 = \frac{1}{E_1} \sigma_1$$

$$\varepsilon_2 = -\upsilon_{12}\varepsilon_1 = \frac{-\upsilon_{12}}{E_1}\sigma_1$$

$$(\frac{1}{E_1} = S_{11}, \frac{-v_{12}}{E_1} = S_{12})$$

$$\varepsilon_2 = \frac{1}{E_2} \sigma_2$$

$$\varepsilon_1 = -\upsilon_{21}\varepsilon_2 = \frac{-\upsilon_{21}}{E_2}\sigma_2$$

$$(\frac{1}{E_2} = S_{22} , \frac{-\upsilon_{21}}{E_2} = S_{21})$$

$$S_{12} = S_{21} \Longrightarrow \frac{\upsilon_{12}}{E_1} = \frac{\upsilon_{21}}{E_2}$$

Transformation of stress and strain

- **Loading axes** (x, y)
- **Principal mat. Axes** (1, 2)

$$[T] = \begin{bmatrix} m^2 & n^2 & 2mn \\ n^2 & m^2 & -2mn \\ -mn & mn & m^2 - n^2 \end{bmatrix} \qquad m = \cos \theta$$

$$n = \sin \theta$$

$$m = \cos \theta$$
$$n = \sin \theta$$

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \tau_3 \end{pmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_s \end{pmatrix}$$

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \tau_3 \end{pmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_s \end{pmatrix} \qquad \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \frac{1}{2} \gamma_3 \end{pmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \frac{1}{2} \gamma_s \end{pmatrix}$$

Transformation of stress and strain

• Q : How to get off-axis stress-strain relation?

Transformation of stress and strain

$$[\varepsilon_{xy}] = [S_{xy}][\sigma_{xy}]$$

Smart materials and design H.W. #3

- For a high strength (HS) carbon fiber/epoxy lamina, calculate the on-axis stiffness matrix, $[Q]_{1,2}$ (E_{11} =131.0 GPa, E_{22} =11.2 GPa, V_{12} =0.28, G_{12} =6.55 GPa)
- Assuming it is isotropic lamina, calculate the on-axis stiffness matrix, $[Q]_{1,2}$ (E_{11} = E_{22} = 131.0 GPa, $v_{12} = v_{21} = 0.30$, $G_{12} = G_{21} = 6.50$ GPa)
- Using the $[Q]_{1,2}$ matrix in problem 1), calculate the off-axis stiffness matrix $[Q]_{x,y}$ of the cylinder where the fiber angle is 45° from the *x*-axis

4) Write the transforming code (Matlab) from $[Q]_{1,2}$ to $[Q]_{x,y}$

Classical lamination theory

Composite beam

N-plane displacement

$$u = u_0 - z \frac{\partial w}{\partial x}$$

$$v = v_0 - z \frac{\partial w}{\partial v}$$

$$\varepsilon_{x} = \frac{\partial u}{\partial x} = \frac{\partial u_{0}}{\partial x} - z \frac{\partial^{2} w}{\partial x^{2}}$$
$$= \varepsilon_{x}^{0} - z \kappa_{x}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y} = \varepsilon_{y}^{0} - z\kappa_{y}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \frac{\partial u_0}{\partial x} + \frac{\partial v_0}{\partial x} - 2z \frac{\partial^2 w}{\partial x \partial y}$$

$$\frac{\partial u_0}{\partial x} + \frac{\partial v_0}{\partial x} = \gamma_s^0$$
$$2\frac{\partial^2 w}{\partial x \partial y} = \kappa_s$$

$$\begin{pmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \gamma_{xy} \end{pmatrix} = \begin{pmatrix} \mathcal{E}_{x}^{0} \\ \mathcal{E}_{y}^{0} \\ \gamma_{s}^{0} \end{pmatrix} + z \begin{pmatrix} \mathcal{K}_{x} \\ \mathcal{K}_{y} \\ \mathcal{K}_{s} \end{pmatrix}$$

Classical lamination theory

$$for k_{th} \text{ layer}$$

$$\begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{s} \end{pmatrix}_{k} = \begin{pmatrix} Q_{xx} & Q_{xy} & \dots \\ \vdots & & \\ \end{pmatrix}_{k} \begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{s} \end{pmatrix}_{k}$$

$$= \begin{pmatrix} Q & \\ \\ \end{pmatrix}_{k} \begin{pmatrix} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{s}^{0} \end{pmatrix} + z \begin{pmatrix} Q & \\ \\ \end{pmatrix}_{k} \begin{pmatrix} \kappa_{x} \\ \kappa_{y} \\ \kappa_{s} \end{pmatrix}$$

Failure

- Max. stress
- Max strain
- Tsai Hill
- Tsai Wu

Parameters

Failure

- Tension along the fiber
 - fiber breakage & matrix failure
- Tension normal to the fiber
 - matrix cracking
- Shear
 - matrix shear out
- Compression along the fiber

Compression normal to the fiber

REVIEW OF STRESS AND STRAIN

Failure

Isotropic 2 material constant, E & v

Stress

$$\sigma_x, \sigma_y, \sigma_z, \tau_{xy}, \tau_{yz}, \tau_{zx}$$

6 components

Known relations

For Normal stresses equilibrium of forces & moments

$$\sum F_x = 0$$

$$\sum F_y = 0$$

$$\sum F_z = 0$$

$$\Rightarrow 3 \text{ Components}$$

$$(\sigma_x, \sigma_y, \sigma_z)$$

For shear stresses

Force
$$\sum F_x = 0$$
$$\sum F_y = 0$$
$$\sum F_z = 0$$

$$\sum F_x = 0$$
Moment
$$\sum F_y = 0$$

$$\sum F_z = 0$$

$$\Rightarrow 3 \text{ Components}$$

$$(\sigma_x, \sigma_y, \sigma_z)$$

$$= (\tau_{xy}, \tau_{yz}, \tau_{zx})$$

$$M_{c} = \sigma_{yx}db - \sigma_{xy}da = 0$$
 $da = db$

$$\sigma_{yx} = \sigma_{xy}$$

$$\sigma_{zx} = \sigma_{xz}$$

$$\sigma_{yz} = \sigma_{zy}$$

Transformation

Vector
$$A_i' = \alpha_{ij} A_j$$
 $new \quad old$

Tensor $A_{ij}' = \alpha_{ik} \alpha_{jl} A_{kl}$
 $\sigma_{ij}' = \alpha_{ik} \alpha_{jl} \sigma_{kl}$
 $new \quad old$

Biaxial stress transformation

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} m^2 & n^2 & 2mn \\ n^2 & m^2 & -2mn \\ -mn & mn & m^2 - n^2 \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix}$$
new
$$\begin{bmatrix} T \end{bmatrix} \qquad old$$

$$m = \cos \theta$$
$$n = \sin \theta$$

Cf.) reverse direction
$$(1,2) \rightarrow (x,y)$$

$$[T(\theta)]^{-1} = [T(-\theta)]$$

$$\sigma_{x,y} = [T]^{-1}\sigma_{1,2}$$

$$T(\theta)T(-\theta) = I$$

$$\sum F_1 = 0$$
$$\sum F_2 = 0$$

Strains

$$\varepsilon_{x} = \frac{\partial u_{x}}{\partial x}$$

$$\varepsilon_{y} = \frac{\partial u_{y}}{\partial y}$$

$$\gamma_{xy} = \left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x}\right)$$

$$\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right)$$

Tensorial shear strain

Biaxial stress transformation

$$\begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \frac{\gamma_{12}}{2} \end{bmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \frac{\gamma_{xy}}{2} \end{bmatrix} \iff \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{12} \end{bmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{xy} \end{bmatrix}$$

Stress analysis of simple geometrics

loading	Geometry	stress
Axial load	$ \begin{array}{c c} & \emptyset \\ & A \end{array} $	$\sigma_x = \pm \frac{N}{A}$
Bending	$y, I \left(I = \int y^2 dA\right)$	$\sigma_{x} = \pm \frac{My}{I}$ $\sigma_{\text{max}} = \pm \frac{Mc}{I}$
Torsion	T r , J $(J = \int r^2 dA)$	$\tau_{xy} = \pm \frac{Tr}{J}$ $\tau_{\text{max}} = \pm \frac{Tc}{J}$
Pressure	$t \xrightarrow{\downarrow} r \qquad P \qquad \xrightarrow{x} x$ r, t	$\sigma_{x} = \pm \frac{Pr}{2t}$ $\sigma_{y} = \pm \frac{Pr}{t}$ $\sigma_{z} = \pm P$

Stress analysis of simple geometrics

For linear elastic case, the stresses can be added together

Failure

Yielding (Ductile)
$$\sigma' \gtrless S_y$$
 Yield strength Strain energy $\gtrless S_y$ Yield strength to propagate crack

Stress analysis of simple geometrics

Von Mises

Principal direction (No shear)

$$\frac{1}{\sqrt{2}} \left[\left(\sigma_1^p - \sigma_2^p \right)^2 + \left(\sigma_2^p - \sigma_3^p \right)^2 + \left(\sigma_3^p - \sigma_1^p \right)^2 \right]^{\frac{1}{2}} = \sigma'$$

$$\frac{1}{\sqrt{2}} \left[\left(\sigma_x - \sigma_y \right)^2 + \left(\sigma_y - \sigma_z \right)^2 + \left(\sigma_z - \sigma_x \right)^2 + 6\tau_{xy}^{2} + 6\tau_{yz}^{2} + 6\tau_{zx}^{2} \right]^{\frac{1}{2}} = \sigma'$$

General σ & ε (anisotropic case)

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$

$$i,j,k,l = 1, 2, 3$$

$$\varepsilon_{ij} = S_{ijkl} \sigma_{kl}$$

$$\left[\mathbf{S}_{ijkl}\right] = \left[\mathbf{C}_{ijkl}\right]^{-1}$$

General elastic constant C_{ijkl} , S_{ijkl} $(3)^4 = 81$ elements

from symmetry of stress, strain as in isotropic case

$$\sigma_{ij} = \sigma_{ji}$$

$$\varepsilon_{ij} = \varepsilon_{ji}$$

$$36 \text{ element}$$

$$(6 \times 6)$$

Simplified notation

$$\begin{cases} \sigma_{11} = \sigma_{1} \\ \sigma_{22} = \sigma_{2} \\ \sigma_{33} = \sigma_{3} \\ \sigma_{23} = \tau_{23} = \sigma_{4} = \tau_{1} \\ \sigma_{31} = \sigma_{5} = \tau_{2} \\ \sigma_{12} = \sigma_{6} = \tau_{3} \end{cases}$$

General σ & ε (anisotropic case)

$$\begin{cases} \varepsilon_{11} = \varepsilon_{1} \\ \varepsilon_{22} = \varepsilon_{2} \\ \varepsilon_{33} = \varepsilon_{3} \end{cases}$$

$$\varepsilon_{33} = \varepsilon_{3} \Rightarrow \text{Engineering shear strain!!}$$

$$2\varepsilon_{23} = \gamma_{23} = \varepsilon_{4} = \gamma_{1}$$

$$2\varepsilon_{31} = \varepsilon_{5} = \gamma_{2}$$

$$2\varepsilon_{12} = \varepsilon_{6} = \gamma_{3}$$

$$C_{1111} = C_{11} \qquad C_{1122} = C_{12} \qquad C_{1133} = C_{13}$$

$$C_{1123} = C_{14} \qquad C_{1131} = C_{15} \qquad \cdots$$

Symmetry of elastic constant

Work per unit volume

$$\mathbf{W} = \frac{1}{2} \sigma_i \varepsilon_i = \frac{1}{2} \mathbf{C}_{ij} \varepsilon_i \varepsilon_j$$
$$\left(\sigma_i = \mathbf{C}_{ij} \varepsilon_j\right)$$

By differentiation

$$\sigma_i = \frac{\partial \mathbf{W}}{\partial \varepsilon_i}$$