M2794.007700 Smart Materials and Design

Smart materials and structures : Introduction

April 27, 2017

Prof. Sung-Hoon Ahn (安成勳

Scoul National University Scoul National University http://fabshuar.kr ahnsh@snuac.kr

Outline

Introduction to smart materials:

- Shape memory effect and shape memory alloy
- Shape memory polymer
- Electro-active polymer
- Ionic polymer-metal composite
- Pneumatic actuators

Application examples of smart materials to engineering

INTRODUCTION TO SMART MATERIALS

What is Smart Materials??

Can we design analogous mechanisms that can intelligently interact with their environment??

"Smart materials" is a combination of sensors, actuators, and processors by responding intelligently and autonomously to dynamically-changing environmental conditions

Ingredients of Smart Materials

Classification of Smart Materials

Advantage of smart material

Continuous deformation

• Realize continuous deformation in simple & light weight structure

Shape memory materials

Shape memory effect (SME)

- A change in shape caused by a change in temperature is called a thermally induced shape memory effect
- Typical shape memory materials
 - Shape memory alloy
 - Shape memory polymer

SMA Spring vs Hot Water

Shape memory effect (http://www.biosmart.co.kr)

Shape memory alloy

Shape memory alloy

Shape memory effect

- When its cold state (below A_s), it can be bent or stretched and will hold its shape until heated above the transition temperature
- Upon heating, the shape changes to its original shape
- When the metal cools again it will remain in the hot shape until deformed again.

Tube coupling

- Pipe couplings for the connection of Titanium tubing in Spacecrafts based on the thermal effect in ternary NiTiNb alloys.
- Memory-Metalle Company

Vascular Stent

Materials for soft morphing structures

SMA embedded composite

- Smart structure for actuator
- Limitation
 - Small actuating deformation
- Application

SAMPSON project - smart inlet structure (Pitt et. al., SAMPSON Smart Inlet Design Overview and Wind Tunnel Test, Part II: Wind Tunnel Test)

SMA smart tentacle

3D printed smart tentacle

https://www.youtube.com/watch?v=Ej-eMAemTDI

SMA robotic octopus

Robot Octopus "Shape-memory Alloy" - European robotics https://www.youtube.com/watch?v=45Dc36dbQC8

SMA robotic hand

Shape Memory Alloy (SMA) Robotic Hand - University of Utah Mechanical Engineering https://www.youtube.com/watch?v=zQih9tLbEzo

Confidential Soft hand driven by SMA tendon wire

Prototype of the soft robotic hand with four SSC artificial fingers and a thumb

© Sung-Hoon Ahn

(Submitted to *Composites Part B*)

Confidential Soft hand driven by SMA tendon wire

Sequences of images showing the bending actuation of the soft robotic hand prototype with a current of 0.8 A

Photographs showing the grasping of various objects by the soft robotic hand: (a) a soda can, (b) a yogurt bottle, (c) a light bulb, (d) a paper cup, (e) a toilet paper roll, (f) a mouse, (g) a pair of scissors, (h) a ball of crumpled paper, and (i) a plastic bottle.

Submitted to Composites Part B

Shape memory polymer

Shape memory polymer

 Polymeric smart material that have ability to return from a deformed state (temporary shape) to their original (permanent) shape induced by an external stimulus, such as temperature change.

Description of the thermally induced shape memory effect in SMP

Shape memory polymer

Advantages

- Large recoverable strain (~400%)
- Easy processing
- Light weight
- Low cost

Drawbacks

Low mechanical properties

Applications

- Alternatives to shape memory alloys (SMAs)
- Heat shrinkable tubes, wraps, foams, and self-adjustable utensils
- Biomedical devices, aerospace structures, and smart textiles

Programmable/Water Actuatable SMP

Propose a novel way to fabricate functionally gradient shape memory polymers, which can be actuated by water.

This technique provides an approach for recovery of shape memory polymers inside, e.g., human body, without any heating system and in a programmable manner.

Difference between SMA and SMP

Shape memory polymers differ from shape memory alloys by

- Glass transition or melting transition from a hard to a soft phase which is responsible for the shape memory effect.
- In shape memory alloys martensitic/austenitic transitions are responsible for the shape memory effect.

Advantages of SMPs which is more attractive than SMA.

- 1. High capacity for elastic deformation (up to 200% in most cases)
- 2. Low cost
- 3. Low density
- 4. Broad range of application temperatures which can be tailored
- 5. Easy processing
- 6. Potential biocompatibility and Biodegradability

Introduction to electro active polymer

Electroactive polymers

- Polymers that exhibits a change in size or shape when stimulated by an electric field
- Large deformation
- Major application field : robotics in the development of artificial muscles
- Often referred to as artificial muscles

List of leading electroactive polymer (EAP) materials

Electronic EAP	Ionic EAP
Dielectric elastomers	Ionic polymer gels (IPG)
Electrostrictive graft elastomers	Ionic polymer metal composite (IPMC)
Electrostrictive paper	Conducting polymers (CP)
Electro-viscoelastic elastomers	Carbon nanotubes (CNT)
Ferroelectric polymers	
Liquid crystal elastomers (LCE)	

Introduction to electro-active polymer

Electroactive polymers

Bending mechanism of ionic polymer metal composite (IPMC)

Actuation of ionic polymer metal composite (IPMC)^[1]

[1] https://www.youtube.com/watch?v=Nn4b7Wi7RIo

Ionic Polymer Metal Composites

- IPMC is consist of base ion exchange polymer and electrode metal (Platinum, Gold, Palladium, Silver,...)
- The metal electrode is formed by special chemical plating or physical treatments
- Bending motion due to uni-directional electro-osmosis by cation with their polar solvent(hydratized cation) toward the cathode

IPMC actuator (Nemat-Nasseret et al. 2003)

Manufacturing and composition of IPMC

IPMC jelly fish

Artificial Muscle Jelly Fish/Squid https://www.youtube.com/watch?v=J2mE0tUk7vA

IPMC https://www.youtube.com/watch?v=Jd7Cg-pyHRU

EAP infrastructure and areas needing attention

EAP Configurations

Dielectric elastomer

- Smart material systems which produce large strains (up to 300%)
- Transform electric energy directly into mechanical work
- Compliant capacitor (see image), where a passive elastomer film is sandwiched between two compliant electrodes
- When V voltage is applied, the electrostatic pressure p_{el} arising from the Coulomb forces acting between the electrodes
- The equivalent electromechanical pressure p_{eq} is given by the following equation

- $\mathcal{E}_0 =$ Vacuum permittivity
- \mathcal{E}_r = Dielectric constant of polymer

Dielectric elastomer gripper

DEMES gripper with four fingers hn https://www.youtube.com/watch?v=uHlr6a1Uwbg

Dielectric EAP muscle Flex robot

Electroactive Polymer Artificial Muscle (EPAM) Flex Robot https://www.youtube.com/watch?v=nl4-s-DDO-M

EAP robot blimp

Electroactive Polymer (EAP) Robot Blimp https://www.youtube.com/watch?v=6cdfWdHZRrE

EAP head and eye

Electroactive Polymers (EAP) for a Robot Head https://www.youtube.com/watch?v=XoyA_w0DDDc

Electroactive Polymer (EAP) eye https://www.youtube.com/watch?v=kqEf-HaK8zg

Origami-inspired DEA

© Sung-Hoon Ahn Origami-Inspired Dielectric Elastomer Actuator https://www.youtube.com/watch?v=oM4TSSx90yw

Piezoelectric effect

- Direct piezo effect
 - A mechanical stress on a material produces an electrical polarization

Piezoelectric effect

Direct piezo effect

• A mechanical stress on a material produces an electrical polarization

Piezoelectric effect

Converse (inverse) piezo effect

 An applied electric field in a material produces dimensional changes and stresses within a material

Piezoelectric effect

Converse (inverse) piezo effect

 An applied electric field in a material produces dimensional changes and stresses within a material

Pneumatic actuators

Linear pneumatic actuator

 Inflatable inner tube/bladder inside a braided mesh, clamped at the ends. Pressurization = Contraction

Fiber reinforced soft pneumatic actuators

- Without any restriction, the soft material expands in all directions.
- If constrained in one direction (using inextensible fiber), the actuator expands in only on direction
- Using inextensible material on one side prevents axial extension on one side, causing bending of the actuator

Pneumatic bending actuator

Bending Actuator Fabricated Using Elastomer and Paper https://www.youtube.com/watch?v=t5cun9UqjDc

Fabrication demo 1:

© Sung-Hoon Ahn

https://www.youtube.com/watch?v=Yji7Ssuw8y4

Social robots

Baymax from "Big Hero 6" by Walt Disney

Pneumatic hand

Soft anthopomorphic hand - first demo https://www.youtube.com/watch?v=ziY-pHSpH5Q

PneuFlex actuator step-by-step production tutorial

https://www.youtube.com/watch?v=Ss-9iXRUeGc

© Sung-Hoon Ahn

Pneumatic hand

Soft Robot Walking and Crawling https://www.youtube.com/watch?v=2DsbS9cMOAE

Multi-scale mass deployable cooperative robots

Multi-scale

Mass-deployable

Cooperative

Multi-scale Mass-deployable Cooperative Robots

The stability of the RHyMo on a rough terrain

Multi-scale Robotics Laboratory, Seoul National University

MANUFACTURING PROCESSES

Manufacturing processes of smart structures

Fabrication methods

- Composite laminates
- Rapid Prototyping
- Training and characterization of shape memory alloy
- Nano Composite Deposition System
- Nano Particle Deposition System

Fabrication systems

- Nano Composite Deposition System (NCDS)
 - Rapidly fabricate the parts with composite (nano compoiste) materials
 - Applications: DDS, medical devices, functional parts, etc.
- Nano Particle Deposition System (NPDS)
 - Metal and ceramic particle deposition at room temperature
 - Applications: functional film coating, conductive line deposition, etc.

3D printing (3DP)

© Sung-Hoon Ahn

CAD

Automatic process planner

Automated fabrication machine

Classification of 3DP Technologies

Applications of 3D printing

3D printing robot

3D printing speaker

3D printed Interactive Speakers

Yoshio Ishiguro Ivan Poupyrev

C DIENEW

3D Soft Lithography

- Manufacturing of thermocurable polymers with 3D external and internal features.
 - Combine additive manufacturing processes with solvents to dissolve the mold's support and the mold.

© Sung-Hoon Ahn

Rodrigue H. *et al.*, 3D Soft Lithography: A Fabrication Process for Thermocurable Polymers, CJournal of Materials Processing Technology (2015)

Actuator deposition manufacturing process

Actuator deposition manufacturing process

Position of high-speed actuator

Comparison of the performance of the actuators from this research with PZT, IPMC and previous SMA-based bending actuators.

© Sung-Hoon Ahn

Bend-twist coupled mode design

Bend-twist coupled mode in 10 Hz actuating speed

- By using angle-ply scaffold ([30/45/30]), high speed bend-twist coupled mode can be produced.
- In different scaffold ply combination, other motions also can be realized.

© Sung-Hoon Ahn

High speed actuator

Performance of high speed actuator

• 20, 35 Hz

Flapping motion of high speed actuator at 20 and 35 Hz

DESIGN AND FABRICATION EXAMPLE 1 : SOFT MORPHING ACTUATOR USING IPMC

Manufacturing process

[1] A new fabrication method for IPMC actuator and application to artificial fingers, Smart Materials and Structures, Sang Jun Lee, Man Jae Han, Seong Jun Kim, Jae Young Jho, Ho Young Lee and Yong Hyup Kim, Smart Mater. Struct. 15 (2006) 1217-1224 © Sung-Hoon Ahn

Circular motion tracking

Comparison between open-loop/closed loop system

Circular motion tracking

: BIOMIMETIC INCHWORM ROBOT

Inchworm robot design

Locomotion mechanism of inchworm robot

Design of inchworm robot

••

Un-actuated SMA wires

••

Actuated SMA wires

A-A

^{↑Z} x

Inchworm robot fabrication

Robot structure

Overall robot structure and its components

© Sung-Hoon Ahn

Table 1. Parameters of robot structure.

Robot parameter	Value
Robot structure dimension (mm)	$196 L \times 140 W \times 4 T$
Body structure dimension (mm)	$158 L \times 140 W \times 4 T$
Feet structure dimension (mm)	$140 L \times 8 W \times 4 T$
Robot structure weight (g)	63.0

L, W, and T: length, width, and thickness.

SMA: Shape memory alloy PDMS: Polydimethylsiloxane PVC: Polyvinyl chloride polymer

Locomotion of inchworm robot

Crawling cellphone robot

(a) All components and CAD modelof integrated smart phone robot.(b) Fabricated smart phone robot.

Interface of phone app for smart phone robot locomotion.

© Sung-Hoon Ahn

Crawling cellphone robot

© Sung-Hoon Ann

DESIGN AND FABRICATION EXAMPLE 3 : SOFT MORPHING SPOILER

Shape-Morphing Cars

BMW Predicts Shape-Morphing Cars With AI Companions

http://www.psfk.com/2016/03/bmw-predicts-shape-morphing-cars-in-the-future.html https://www.youtube.com/watch?v=ztfVoGqW5VU&nohtml5=False

Soft morphing spoiler design

© Sung-Hoon Ahn

Han M W, et al. Woven type smart soft composite for soft morphing car spoiler. Composites Part B: Engineering, 2016, 86: 285-298.
Soft morphing spoiler

Soft morphing spoiler

Soft morphing winglet design

[©] Sung-Hoon Ahn Wind tunnel test of morphing winglet ($Re = 9 \times 10^4$, $U_{\infty} = 15$ m/s)

DESIGN AND FABRICATION EXAMPLE 4 : BIOMIMETIC RAY ROBOT

Locomotion of Ray

Swimming method of rays

- Thrust via pectoral fins' movement
- Stiffness variation in the skeleton structure of ray

Skeleton structure of Ray (Gymnura micrura)

Undulating Locomotion of Ray

Evaluation of prototype

Ray robot locomotion

- Ray robot fabrication using anisotropic material
- Undulating motion of the ray was realized at robot

Fabricated ray robot and undulating motion of robot © Sung-Hoon Ahn

Locomotion of biomimetic ray robot

DESIGN AND FABRICATION EXAMPLE 5 : BIOMIMETIC TURTLE ROBOT

Turtle robot design

Soft morphing turtle robot

Front view of turtle motion and robot locomotion

Side view of turtle motion and robot locomotion

Side view of turtle motion and robot locomotion

Song, S.H., et al., Turtle mimetic soft robot with two swimming gait," Bioinspiration & Biomimetic, 2016

Flipper motion of turtle robot

Turtle robot locomotion

Routine mode locomotion (speed : 7.4 mm/s)

Vigorous mode locomotion (speed : 11.5 mm/s)

Turtle robot Controller

Control system of turtle robot

Confidential

Underwater robots made of smart materials

*Turtle robot and ray robot: 0.25 Hz

Comparison of robots operating in different swimming modes (speed per body length vs. operation frequency (at maximum speed))^[1]

Comparison with motor-based underwater robots

DESIGN AND FABRICATION EXAMPLE 6 : SHAPE RETENTION ACTUATOR

Shape Retention Actuator (1)

- Shape memory alloy (SMA) based composite actuators that can retain its shape by changing locally between a high-stiffness and a low-stiffness state.
 - Low-stiffness state: soft morphing capability (to produce a smooth continuous deformation)
 - High-stiffness state: working configuration (without continuous energy consumption)

Actuation description

The actuator configuration and its components

FA materials: low melting materials such as fusible alloy, thermoplastics, wax.

The shape retention process. (*a*) The actuation pattern. (*b*) to (*e*) are the different states of the actuator at time t_1 , t_2 , t_3 and t_4 .

W. Wang *et al.*, Smart Soft Composite Actuator with Shape Retention Capability using Embedded Fusible Alloy Structures, Composites Part B: Engineering (2015)

© Sung-Hoon Ahn

Actuator design

Shape Retention Actuator (2)

Fabrication process

Fabrication process of the actuator. (a) FA structure fabrication setup. (b) to (d) Fabricated FA structure. (e) Fabricated shape retention actuator.

Actuation process for one-segment actuator

Shape retention sequence diagram. (*a*) Current sequence for actuating and cooling. (*b*) Actuator configuration before actuation of SMA wire. (*c*) to (*d*) The left-bending shape at time t_2 and t_3 , and (*e*) juxtaposed.

Actuation process for two-segment actuator

Nine different configurations of the two-segmented actuator, (a) to (i).

© Sung-Hoon Ahn