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Hygrothermal effect

▪ Hygrothermal efffects

▪ Hygro (Moisture) + thermal (Temperature) effects

▪ Matrix dominated properties

▪ transverse tensile, transverse compressive and shear
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Hygrothermal effect
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Moisture effect on typical polymer
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Stiffness

Temperature

Increasing moisture content

dry

wet

Tgw Tgd

Tg

Moisture content (wt %)

220 ℃

110 ℃

5 10

Weight gain
Maximum (saturation) ~ 1 - 3%

drying
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Moisture effect on typical polymer
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▪ Governing equation

▪ Temperature (Fourier heat conduction)

▪ Moisture (Fick’s 2nd law)

▪ Cf) Fick’s 1st law

▪ Where,

= Density of material

= Specific heat of material

= Thermal conductivity of material along the z-direction

= Mass diffusivity along the z-direction

= Time

= Moisture concentration
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Moisture weight gain
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Where,

: Initial weight percent of moisture

: Fully saturated weight percent of moisture

- Measured value: composite 0~2 %
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Moisture weight gain
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▪ Example

Epoxy sample with h = 5 ㎜, D (diffusivity) = 3 × 10-8 ㎟/s.

Determine the moisture absorption of an initially dry sample after a period 

t = 100 days.
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▪

= Matrix mechanical property retention ratio

= Strength of matrix after degradation

= Net strength of matrix after degradation

= Glass transition temperature (dry)

= Glass transition temperature (wet) [℉]

= Temperature at F0 was measured

▪ Chamis (1982) suggested an empirical eq. for Tgw of aerospace epoxy resins.

▪ Degraded material properties (longitudinal modulus)

Degradation of composite properties
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Degradation of composite properties
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▪ Example

At a “hot-wet” condition, T = 200 ℉, Mr = 3 %.

Tgo = 350 ℉ Em = 0.5 × 106 psi

Ef = 32 × 106 psi

vf = 0.510

vm = 0.49

Tgw = (0.005(3)2 – 0.10(3) + 1.0) 350 = 261 ℉

E of matrix,

Longitudinal modulus

Transverse modulus

psi 1023.0psi) 105.0(
70350

200261
' 662
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Cf. E1 = 16.4 × 106 psi 

→ 99 %

→ Only

53 %
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Hygrothermal strains in lamina
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▪ Uncoupled deformation from the thermal & moisture

▪ Hygrothermal strains

α: Coefficient of thermal expansion

β: Coefficient of moisture expansion

▪ Transformation
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 Note Carbon/epoxy – 0.9 × 10-6
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Hygrothermal strains in lamina
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▪ Using above equations,

with (Eq. 6.6)
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σ-ε with hygrothermal effects
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σ-ε with hygrothermal effects
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▪ Inverting,

▪ For a laminate,
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σ-ε with hygrothermal effects
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▪ In terms of [A] and [B]

▪ Similarly,
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σ-ε with hygrothermal effects
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▪ Let       &       be the total force & moment resultant

As before,

Also inverting,
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σ-ε with hygrothermal effects
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▪ Example

[-45/45/-45/45], 0.25 ㎜ thick unidirectional ( t : total thickness )

laminate heated from 20 ℃ to 100 ℃.

Determine the hygrothermal stresses.

CTEs α1 = 0.88 × 10-6 /℃

α2 = 31 × 10-6 /℃

CTE at +45° & -45° :

From equation ①, [N] = 0, and [M] = 0
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σ-ε with hygrothermal effects
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▪ Example

From equation ①, [N] = 0, and [M] = 0
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σ-ε with hygrothermal effects
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▪ Example

Similarly for moment




2
)(}{][)(}{][

)(}{][)(}{][][

2
3

2
44545

2
2

2
34545

2
1

2
24545

2
0

2
14545

T
zzQzzQ

zzQzzQM T














2410

81.3

0

0

mmGPa 


















 



©  Sung-Hoon Ahn

Physical significance
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▪ Thermal loading NT is equal to the reaction N0 of the fixed-end beam under 

thermal loading. The mechanical force necessary to produce a strain is 

equal to the purely thermal strain of the laminate.
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Sandwich structure

21

▪ Sandwich – face sheets & core

▪ Analysis

▪ Modified classical laminate theory accommodating shear flexibility of the 

core

▪ Material behavior

▪ The core material is orthotropic and linear elastic.

▪ The face sheet material is orthotropic and linear elastic.

▪ Stresses

▪ Core sustains only transverse shear stresses;

the in-plane stresses in the core are negligible.

▪ Face sheets sustain only in-plane loads;

the transverse shear stresses

in the face sheets are negligible.
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Sandwich structure
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▪ Strain

▪ The transverse strain is negligible.
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Core material
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▪ Honeycomb

▪ Aluminum

▪ Phenolic (1/100 CTE of Al)

(Porous wall – air connection,

in space structure escape)

▪ Synthetic core

▪ Glass microballons with matrix (resin)

▪
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Core material
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▪ Honeycomb

Circular Cell

Triangular Cell Hexagonal Cell

Rectangular Cell
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Core material
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▪ Honeycomb
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Core material
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▪ Honeycomb

▪ Compare Theoretical Result to Experimental Result 

Simulation result     VS     Actual Test
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Core material
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▪ Advantages

▪ Continuous support to the face sheet

▪ No moisture ingress problems

▪ High compressive, transverse tensile & lateral strength

▪ Foam

▪ Sponge-like material – resin

▪   33 /51.2~/102~ mkgftlb

Micro spheres
(~70 μm mean)

Thermoset resin
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Benefit of core
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Damage type

▪ Types of damage

▪ Delamination after impact
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(a) Undetectable damage (b) Detectable damage (c) Penetration damage

(a) Delamination and microcracks under dent 
(b) Enlarged view
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Issues
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▪ Water ingression

▪ Directional properties of cone → Starcell

plate bending

▪ Space craft - perforated
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Joint

31
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Joint

32
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Joint
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▪ Mechanical joint

▪ Bearing

Shear out

Tension

▪ Strength of joint → 20-50 % of laminate strength

▪ Near optimum layup: [0/±45/0]s or [0/45/90/-45]s

- Reduced load carrying material
- Stress concentration
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Joint

34

▪ Adhesive bonded joint

▪ Analysis

▪ Volkersen (1938)

▪ Hart-Smith (1970’s)

▪ Load transfer by shear

▪ Minimize stress concentration – scartf, and stepped joint

▪ Surface treatment

▪ Do not use 90 ° plies on the outer surface → use ±45 °

▪ Better fatigue performance

▪ Review paper by Gleich et al.

▪ Comparison of mechanical & adhesive joints

▪ Cf. bonded and fastened
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Structural joint of Composite/Metal
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Bonding of honeycomb reinforcement

Bonding different materials Al/SAF/CFRP Bonding different materials 

CFRP/SAF/Al honeycomb/SAF/CFRP

Bolt joint of metal to CFRP
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Stress analysis of bonded joint
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Stress analysis of bonded joint
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▪ In terms of displacement

unloaded

loaded
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Failure modes
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Shear

Strength

Adherend (laminate)

thickness

Scarf joint → could be as strong as the adherend
→ practically note

Tapered → reduced stress concentration

Consider to use when t > 6.35 mm

(stepped too)
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Effect of length of joint
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Stepped lap joint
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▪ Extensively used to join CFRP & titanium

τ

← Composite affects
stress profile
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Joint and Repair 

▪ Joint type

▪ Repair type

41

(a) Bolted repair

(b) Bonded repair

(c) Stepped-lap repair

(d) Scarf repair

(e) Honeycomb repair

(f) Alternative honeycomb repair
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Joint and Repair 

▪ Flush repair
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Typical flush repair (Scarf)

(a) Remove damaged material (b) Flush repaired panel



Reaction-injection molding / Blow molding
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Thermoforming / Compression molding
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Transfer molding / Casting

44
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Polymer matrix reinforced plastics

▪ Prepregs

▪ Sheet-molding compound (SMC)

▪ Bulk-molding compound (BMC)

▪ Thick molding compound (TMC)

BMC

45



Manufacturing of polymer matrix reinforced plastics

▪ Molding

▪ Compression molding

▪ Vacuum-bag molding

• Autoclave

▪ Contact molding

• Hand lay-up

▪ Resin transfer molding

▪ Injection molding

▪ Filament winding

▪ Pultrusion

46

Advanced Composites Inc.



Automatic tape lay-up
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Automated Composite Layup & Spray Up
https://www.youtube.com/watch?v=Dl2xVPVif0w



Vacuum bag molding / Autoclave
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Resin transfer molding (RTM) manufacturing
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Resin Transfer Moulding

https://www.youtube.com/watch?v=1u-2GvhghQA



3D-Printed electric production car
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Roughly 75 percent of the LM3D Swim will be 3D printed, 

including the body panels and chassis, using some sort of 

composite ABS plastic/carbon fiber material that’s yet to be 

finalized. Eventually, Local Motors hopes to be printing as 

much as 90 percent of the car.

Plastic / Carbon Fiber pellets used to print 3-D Car, Local Motors


