M2794.007700 Smart Materials and Design

Hygrothermal effects, Manufacturing and Joining

May 30, 2017

Prof. Sung-Hoon Ahn (安成勳

Scoul National University http://fab.soua.kr ahnsh@snu.ac.kr

Outline

Hygrothermal effect Sandwich structure Joint & Repair

Hygrothermal effect

Hygrothermal efffects

- Hygro (Moisture) + thermal (Temperature) effects
- Matrix dominated properties
- transverse tensile, transverse compressive and shear

Fig. 6.1 Transverse tensile stress-strain curves for dry AS4/3501-6 carbon/epoxy composite at various temperatures.²

Fig. 6.2 In-plane shear stress-strain curves for unidirectional AS4/3501-6 carbon/epoxy composite at various temperatures.²

Hygrothermal effect

Fig. 6.3 Transverse tensile stress-strain curves for unidirectional silicon carbide/aluminum (SCS-2/6061AI) composite at various temperatures.

Fig. 6.5 In-plane shear stress-strain curves for unidirectional AS4/3501-6 carbon/epoxy composite illustrating effects of temperature and moisture concentration.

Fig. 6.4 In-plane shear stress-strain curves for unidirectional silicon carbide/aluminum (SCS-2/6061AI) composite at various temperatures.

Fig. 6.6 Torsional stiffness degradation of carbon/epoxy composite under cyclic loading under various hygrothermal conditions.

© Sung-Hoon Ahn

Moisture effect on typical polymer

© Sung-Hoon Ahn

Moisture effect on typical polymer

- Governing equation
 - Temperature (Fourier heat conduction)

$$\rho C \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} K_z \frac{\partial T}{\partial z}$$

Moisture (Fick's 2nd law)

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial z} D_z \frac{\partial c}{\partial z}$$

• Cf) Fick's 1st law
$$J$$
 [flux] = $-D\frac{dc}{dz}$

Ambient temperature T_a Ambient moisture concentration C_a

- Where,
 - ρ = Density of material
 - C = Specific heat of material
 - K_z = Thermal conductivity of material along the z-direction
 - $D_{\rm Z}$ = Mass diffusivity along the z-direction
 - t = Time
 - c = Moisture concentration
- © Sung-Hoon Ahn

Temperature reaches equilibrium about one million times faster than the moisture concentration $\rightarrow T$ assumed to be the same as T_a

Moisture weight gain

$$G = \frac{M - M_i}{M_m - M_i} = 1 - \frac{8}{\pi^2} \sum_{j=1}^{\infty} \frac{\exp[-(2j+1)^2 \pi^2 (D_z t / h^2)]}{(2j+1)^2}$$

Where,

- M_i : Initial weight percent of moisture
- M_m : Fully saturated weight percent of moisture
- Measured value: composite 0~2 %

Moisture weight gain

Example

Epoxy sample with h = 5 mm, D (diffusivity) = $3 \times 10^{-8} \text{ mm}^2/\text{s}$.

Determine the moisture absorption of an initially dry sample after a period t = 100 days.

$$\frac{\pi^2 Dt}{h^2} = 0.102$$

 $M_i = 0$ for initially dry sample

$$\frac{M}{M_m} = 1 - \frac{8}{\pi^2} \left[\exp(-0.102) + \frac{\exp(-9(0.102))}{9} + \cdots \right] \quad \rightarrow \text{ one term will be sufficient.}$$
$$\sim 0.23$$

Degradation of composite properties

•
$$F_m = \frac{P}{P_0} = \left(\frac{T_{gw} - T}{T_{go} - T_o}\right)^{\frac{1}{2}}$$

 F_m = Matrix mechanical property retention ratio

- P = Strength of matrix after degradation
- P_o = Net strength of matrix after degradation
- T_{go} = Glass transition temperature (dry)
- T_{gw} = Glass transition temperature (wet)

 T_o = Temperature at F₀ was measured

[°F]

Chamis (1982) suggested an empirical eq. for T_{gw} of aerospace epoxy resins.

 $T_{gw} = (0.005M_r^2 - 0.10M_r^2 + 1.0)T_{go}$

Degraded material properties (longitudinal modulus)

$$E_1 = E_{f_1} v_f + F_m E_{mo} v_m$$

Degradation of composite properties

Example

At a "hot-wet" condition, T = 200 °F, $M_r = 3$ %.

$$T_{go} = 350 \ ^{\circ}\text{F}$$
 $E_m = 0.5 \times 10^6 \text{ psi}$
 $E_f = 32 \times 10^6 \text{ psi}$
 $v_f = 0.510$
 $v_m = 0.49$

$$T_{gw} = (0.005(3)^2 - 0.10(3) + 1.0) 350 = 261$$
°F

E of matrix,

$$E_m' = \left(\frac{261 - 200}{350 - 70}\right)^{\frac{1}{2}} (0.5 \times 10^6 \text{ psi}) = 0.23 \times 10^6 \text{ psi}$$

Longitudinal modulus

$$E_1' = (32 \times 10^6)(0.51) + (0.23 \times 10^6)(0.49) = 16 \times 10^6 \text{ psi}$$

Cf.
$$E_I = 16.4 \times 10^6 \text{ psi}$$

 $\rightarrow 99 \%$

Transverse modulus

 $E_2 = 0.434 \times 10^6 \text{ psi}$ $E_2 = 0.82 \times 10^6 \text{ psi} \qquad \rightarrow \text{ Only} \\ 53 \%$

© Sung-Hoon Ahn

Hygrothermal strains in lamina

- Uncoupled deformation from the thermal & moisture
- Hygrothermal strains

 $e_1 = \alpha_1 \Delta T + \beta_1 \Delta C$ $e_2 = \alpha_2 \Delta T + \beta_2 \Delta C$ $e_6 = 0$

α: Coefficient of thermal expansionβ: Coefficient of moisture expansion

Transformation

$$e_x = e_1 m^2 + e_2 n^2$$

$$e_y = e_1 n^2 + e_2 m^2$$

$$e_s = 2(e_1 - e_2)mn$$

$$m = \cos \theta$$

$$n = \sin \theta$$

Note Carbon/epoxy – 0.9×10^{-6} Carbon/polyimde – 0.4×10^{-6} Kevlar/epoxy – 4×10^{-6} have negative α_I .

Hygrothermal strains in lamina

Using above equations,

$$e_{x} = \alpha_{x}\Delta T + \beta_{x}\Delta C$$
$$e_{y} = \alpha_{y}\Delta T + \beta_{y}\Delta C$$
$$e_{s} = \alpha_{s}\Delta T + \beta_{s}\Delta C$$

with (Eq. 6.6)

$$\alpha_x = \alpha_1 m^2 + \alpha_2 n^2$$
$$\alpha_y = \alpha_1 n^2 + \alpha_2 m^2$$
$$\alpha_s = 2(\alpha_1 - \alpha_2)mn$$

Inverting,

$$\begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{s} \end{pmatrix} = \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{ys} & Q_{ss} & Q_{ys} \\ Q_{sx} & Q_{sy} & Q_{ss} \end{bmatrix}_{k} \begin{pmatrix} \varepsilon_{x} - e_{x} \\ \varepsilon_{y} - e_{y} \\ \gamma_{s} - e_{s} \end{pmatrix}_{k}$$
$$= \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{ys} & Q_{ss} & Q_{ys} \\ Q_{ys} & Q_{ss} & Q_{ys} \\ Q_{sx} & Q_{sy} & Q_{ss} \end{bmatrix}_{k} \begin{pmatrix} \varepsilon_{x}^{o} + z\kappa_{x} - e_{x} \\ \varepsilon_{y}^{o} + z\kappa_{y} - e_{y} \\ \gamma_{s}^{o} + z\kappa_{s} - e_{s} \end{pmatrix}_{k}$$

• For a laminate,

$$\begin{pmatrix} N_{x} \\ N_{y} \\ N_{s} \end{pmatrix} = \sum_{k=1}^{n} \int_{h_{k-1}}^{h_{k}} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{ys} & Q_{ss} & Q_{ys} \\ Q_{sx} & Q_{sy} & Q_{ss} \end{bmatrix}_{k} \left\{ \begin{pmatrix} \varepsilon_{x}^{o} \\ \varepsilon_{y}^{o} \\ \gamma_{s}^{o} \end{pmatrix} + z \begin{pmatrix} \kappa_{x} \\ \kappa_{y} \\ \kappa_{s} \end{pmatrix} - \begin{pmatrix} e_{x} \\ e_{y} \\ e_{s} \end{pmatrix} \right\}_{k} dz$$

In terms of [A] and [B]

$$\begin{pmatrix} N_{x} \\ N_{y} \\ N_{s} \end{pmatrix} = \begin{bmatrix} A_{xx} & A_{xy} & A_{xs} \\ A_{yx} & A_{yy} & A_{ys} \\ A_{sx} & A_{sy} & A_{ss} \end{bmatrix} \begin{pmatrix} \varepsilon_{x}^{o} \\ \varepsilon_{y}^{o} \\ \gamma_{s}^{o} \end{pmatrix} + \begin{bmatrix} B_{xx} & B_{xy} & B_{xs} \\ B_{yx} & B_{yy} & B_{ys} \\ B_{sx} & B_{sy} & B_{ss} \end{bmatrix} \begin{pmatrix} \kappa_{s} \\ \kappa_{y} \\ \kappa_{s} \end{pmatrix} - \sum_{k=1}^{n} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{yx} & Q_{yy} & Q_{ys} \\ Q_{sx} & Q_{sy} & Q_{ss} \end{bmatrix} \begin{pmatrix} e_{x} \\ e_{y} \\ e_{s} \end{pmatrix}_{k} t_{k}$$

Similarly,

$$[M]_{x,y} = \sum_{k=1}^{n} \int_{h_{k-1}}^{h_{k}} \left[Q^{k}_{x,y} \right] \left\{ \left[\varepsilon^{o} \right]_{x,y} + z[\kappa]_{x,y} - \left[e \right]^{k}_{x,y} \right\} z \, dz \qquad \begin{bmatrix} N_{s}^{HT} \end{bmatrix} \right]$$

$$\begin{pmatrix} M_{x} \\ M_{y} \\ M_{s} \end{pmatrix} = \begin{bmatrix} B_{xx} B_{xy} B_{xs} \\ B_{yx} B_{yy} B_{ys} \\ B_{sx} B_{sy} B_{ss} \end{bmatrix} \begin{pmatrix} \varepsilon_{x}^{o} \\ \varepsilon_{y}^{o} \\ \gamma_{s}^{o} \end{pmatrix} + \begin{bmatrix} D_{xx} D_{xy} D_{xs} \\ D_{yx} D_{yy} D_{ys} \\ D_{sx} D_{sy} D_{ss} \end{bmatrix} \begin{pmatrix} \kappa_{s} \\ \kappa_{y} \\ \kappa_{s} \end{pmatrix} - \sum_{k=1}^{n} \begin{bmatrix} Q_{xx} Q_{xy} Q_{xs} \\ Q_{yx} Q_{yy} Q_{ys} \\ Q_{sx} Q_{sy} Q_{ss} \end{bmatrix} \begin{pmatrix} e_{x} \\ e_{y} \\ e_{s} \end{pmatrix}_{k} Z_{k} t$$

$$M_{x}^{HT} = \sum_{k=1}^{n} \begin{bmatrix} M_{x}^{HT} \\ M_{y}^{HT} \\ M_{s}^{HT} \end{bmatrix} Z_{k} = \frac{h_{k} - h_{k-1}}{2}$$
Toon Ahn

 $\begin{pmatrix}
N_x^{HT} \\
N_y^{HT}
\end{pmatrix}$

© Sung-Hoon Ahn

• Let $[\overline{N}]$ & $[\overline{M}]$ be the total force & moment resultant

$$[\overline{N}]_{x,y} = [N]_{x,y} + [N^{HT}]_{x,y} = [A][\varepsilon^{o}]_{x,y} + [B][\kappa]_{x,y}$$
$$[\overline{M}]_{x,y} = [M]_{x,y} + [M^{HT}]_{x,y} = [B][\varepsilon^{o}]_{x,y} + [D][\kappa]_{x,y}$$

As before,

$$\begin{pmatrix} \overline{N} \\ \overline{M} \end{pmatrix} = \begin{pmatrix} A & B \\ B & D \end{pmatrix} \begin{pmatrix} \varepsilon^{\circ} \\ \kappa \end{pmatrix}$$

Also inverting,

$$\begin{pmatrix} \varepsilon^{o} \\ \kappa \end{pmatrix} = \begin{pmatrix} a \ b \\ b \ d \end{pmatrix} \begin{pmatrix} \overline{N} \\ \overline{M} \end{pmatrix}$$

Example

[-45/45/-45/45], 0.25 mm thick unidirectional (t: total thickness) laminate heated from 20 °C to 100 °C. Determine the hygrothermal stresses.

CTES $\alpha_1 = 0.88 \times 10^{-6} / ^{\circ} C$ $\alpha_2 = 31 \times 10^{-6} / ^{\circ} C$

CTE at +45° & -45° :

$$\begin{cases}
\alpha_x \\
\alpha_y \\
\alpha_{xy/2}
\end{cases}_{45^\circ} = [T^{-1}]_{45^\circ} \begin{cases}
\alpha_1 \\
\alpha_2 \\
0
\end{cases} = \begin{cases}
15.94 \\
15.94 \\
-15.06
\end{cases} \times 10^{-6} \circ C \qquad \begin{cases}
\alpha_x \\
\alpha_y \\
\alpha_{xy/2}
\end{cases}_{-45^\circ} = [T^{-1}]_{-45^\circ} \begin{cases}
0.88 \\
31.0 \\
0
\end{cases} = \begin{cases}
15.94 \\
15.94 \\
-15.06
\end{cases} \times 10^{-6} \circ C$$

From equation (1), [N] = 0, and [M] = 0

Example

From equation (1), [N] = 0, and [M] = 0

$$[N^{T}] = \left\{ [Q]_{45} \{\alpha\}_{45} + [Q]_{-45} \{\alpha\}_{-45} \right\} (2) (\Delta T)(t/4)$$

Thermal load 2 plies

$$\begin{cases} N_x^T \\ N_y^T \\ N_s^T \end{cases} = \begin{bmatrix} Q_{xy} \end{bmatrix}_{45^{\circ}} \begin{cases} 15.94 \\ 15.94 \\ -30.12 \end{cases} \times 10^{-6} (2) (80 \ ^{\circ}C) (0.25) + \begin{bmatrix} Q_{xy} \end{bmatrix}_{-45^{\circ}} \begin{cases} 15.94 \\ 15.94 \\ 30.12 \end{cases} \times 10^{-6} (2) (80 \ ^{\circ}C) (0.25) \end{cases}$$

$$= \begin{cases} 1.95\\ 1.95\\ 0 \end{cases} \times 10^{-2} \ GPa \cdot mm$$

• Example

Similarly for moment

$$[M^{T}] = \left([Q]_{-45} \{\alpha\}_{-45} (z_{1}^{2} - z_{0}^{2}) + [Q]_{45} \{\alpha\}_{45} (z_{2}^{2} - z_{1}^{2}) + [Q]_{-45} \{\alpha\}_{-45} (z_{3}^{2} - z_{2}^{2}) + [Q]_{45} \{\alpha\}_{45} (z_{4}^{2} - z_{3}^{2}) \right) \frac{\Delta T}{2}$$

$$= \begin{cases} 0\\0\\-3.81 \end{cases} \times 10^{-4} \ GPa \cdot mm^2$$

Physical significance

 Thermal loading N^T is equal to the reaction N₀ of the fixed-end beam under thermal loading. The mechanical force necessary to produce a strain is equal to the purely thermal strain of the laminate.

Sandwich structure

- Sandwich face sheets & core
- Analysis
 - Modified classical laminate theory accommodating shear flexibility of the core
 - Material behavior
 - The core material is orthotropic and linear elastic.
 - The face sheet material is orthotropic and linear elastic.
 - Stresses
 - Core sustains only transverse shear stresses; the in-plane stresses in the core are negligible.
 - Face sheets sustain only in-plane loads; the transverse shear stresses in the face sheets are negligible.

Sandwich structure

- Strain
 - The transverse strain is negligible.

Honeycomb

Aluminum

$$\sim \begin{pmatrix} 2 - 10 \, lb \, / \, ft^3 \\ 0.0126 - 0.63 \, kg \, / \, m^3 \end{pmatrix}$$

 Phenolic (1/100 CTE of Al) (Porous wall – air connection, in space structure escape)

ρ

Synthetic core

- Glass microballons with matrix (resin)
- $\rho \sim (2 10 lb / ft^3) \sim 2.51 kg / m^3$

Honeycomb

Circular Cell

Triangular Cell

Rectangular Cell

Hexagonal Cell

Honeycomb

© Sung-Hoon Ahn

Core material

- Honeycomb
 - Compare Theoretical Result to Experimental Result

URES (mm)

5.198e-003 4.765e-003 4.332e-003 3.899e-003 3.465e-003 3.032e-003 2.599e-003 2.166e-003 1.733e-003 1.300e-003 8.864e-004 4.332e-004 1.000e-030

Simulation result VS Actual Test

- Advantages
 - Continuous support to the face sheet
 - No moisture ingress problems
 - High compressive, transverse tensile & lateral strength

- Foam
 - Sponge-like material resin
 - $\rho \sim (2 10 lb / ft^3) \sim 2.51 kg / m^3$

Benefit of core

© Sung-Hoon Ahn

Damage type

Types of damage

(a) Undetectable damage

(b) Detectable damage

(c) Penetration damage

Delamination after impact

(a) Delamination and microcracks under dent

(b) Enlarged view

Issues

- Water ingression
- Directional properties of cone → Starcell plate bending
- Space craft perforated

Joint

Joint

Mechanical joint

- Bearing
 Shear out
 Tension
 - Reduced load carrying material
 - Stress concentration
- Strength of joint \rightarrow 20-50 % of laminate strength
- Near optimum layup: $[0/\pm 45/0]_s$ or $[0/45/90/-45]_s$

Joint

Adhesive bonded joint

- Analysis
 - Volkersen (1938)
 - Hart-Smith (1970's)
- Load transfer by shear
- Minimize stress concentration scartf, and stepped joint
- Surface treatment
- Do not use 90 $^\circ$ plies on the outer surface \rightarrow use ±45 $^\circ$
- Better fatigue performance

• Review paper by Gleich et al.

- Comparison of mechanical & adhesive joints
- Cf. bonded and fastened

Structural joint of Composite/Metal

Bonding of honeycomb reinforcement

Bolt joint of metal to CFRP

Bonding different materials AI/SAF/CFRP

Bonding different materials CFRP/SAF/AI honeycomb/SAF/CFRP

Stress analysis of bonded joint

Stress analysis of bonded joint

In terms of displacement

Failure modes

Effect of length of joint

© Sung-Hoon Ahn

Stepped lap joint

Extensively used to join CFRP & titanium

← Composite affects stress profile

Joint and Repair

Joint type

Repair type

Joint and Repair

Flush repair

(a) Remove damaged material

(b) Flush repaired panel

Typical flush repair (Scarf)

Reaction-injection molding / Blow molding

Thermoforming / Compression molding

Transfer molding / Casting

Polymer matrix reinforced plastics

- Prepregs
- Sheet-molding compound (SMC)
- Bulk-molding compound (BMC)
- Thick molding compound (TMC)

Manufacturing of polymer matrix reinforced plastics

- Molding
 - Compression molding
 - Vacuum-bag molding
 - Autoclave
 - Contact molding
 - Hand lay-up
 - Resin transfer molding
 - Injection molding
- Filament winding

FIGURE 10.36 (a) Vacuum-bag forming. (b) Pressure-bag forming. Source: T. H. Meister.

Advanced Composites Inc.

46

Pultrusion

Automatic tape lay-up

Automated Composite Layup & Spray Up https://www.youtube.com/watch?v=Dl2xVPVif0w

Vacuum bag molding / Autoclave

FIGURE 5 Vacuum bag assembly.

Resin transfer molding (RTM) manufacturing

Resin Transfer Moulding https://www.youtube.com/watch?v=1u-2GvhghQA

3D-Printed electric production car

Plastic / Carbon Fiber pellets used to print 3-D Car, Local Motors Roughly 75 percent of the LM3D Swim will be 3D printed, including the body panels and chassis, using some sort of composite ABS plastic/carbon fiber material that's yet to be finalized. Eventually, Local Motors hopes to be printing as much as 90 percent of the car.