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State Feedback with State Observer

e Consider CT-LTT system:
&=Az+ Bu, y=Cz+ Du

e Best you can get is all state x is available for control = state feedback.
o State feedback (e.g., u = Kz) vs output feedback (e.g., u = u(y)).

e Static control (e.g., v = Kz) vs dynamic control (e.g., IMC).

e Yet, typically too expensive/noisy to measure all state x = state observer.

e State observer: utilize known dynamics to propagate estimated state &
with correction using real output y and estimated output CZ + Du.

e State feedback with estimated state = observer-based state feedback.

o Regulation control, tracking control, IMC in state space.
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Pole Placement and CTRB Canonical Form
Counsider SISO CT-LTI system:

= Az+ Bu, y=Cz+ Du

— System’s behavior depends on the eigenvalues of A.
— Poles of H(s) = C(sI — A)™'B + D C eigenvalues of A.

Cousider state feedback control u = —Kxz + v. Then,

2=(A—-BK)z+v=Agz+v

i.e., system dynamics changed by state feedback from A to Ag.

If (A, B) in CTRB canonical form, can assign arbitrary eigenvalues to A.

— __bgs®4biatb, . .
H(s) = st~ = CTRB canonical form:

0 1 0 0
= 0 0 1 z+ | 0 | u, y:[bo b bz]:c—i—Du
—Gp, —Q1 —a2 1

0 1 0

OWithuz—[ko k kg]x—l—’():}Acl: 0 0 1
| —Qp — ko —ay — kl —dag — kg
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S| Pole Placement and CTRB

Th. 8-3: If SI CT-LTI system (A, B) is CTRB, we can assign arbtrary eigen-
values of Ay by state feedback u = —Kx + v.

e Th. 8-2: Any CTRB (A, B) is equivalent to CTRB canonical form.

— From proof of Th. 7-3M, define similarity-TF z = P~z with P71 =
CC~1, where

_00 1 ~ a; az 1
C=|0 1 —a3 |, Cl'=|a 1 0

1 —a2 a2—a 1 0 0

— Check if PAP"1=A= AP 1=pP 1A=
APl = [ (CI.]A + G.zAz + A3)B a2AB + A’B AB ]
= [ —a,B —a2AB+ A’2B AB ]
—a, 0 O
0 as 1].

0 1 0
— Similarity-TF preserves eigenvalues => if (4, B) CTRB, can assign
any CL-eigenvalues via SSFB|u = K& — K Pz,|K = [ko, k1, k2]. ..

which is the same as P"!A=[ B AB A’B |
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MI Pole Placement and CTRB

Th. 8-3M: All the eigenvalues of A;; = A — BK can be arbitrarily assigned by
the state feedback v = — Kz iff MI CT-LTI system (A, B) is CTRB.

e Heymann’s lemma: Let (A,B) CTRB and b; € ®*, i = 1,..,p, be a
column vector of B. Then, Vb;, 3F; € RP*" s.t., (A — BF;,b;) is CTRB.
Equivalently, Vb € R(B) Cc ®", IF € %" s.t., (A — BF,b) is CTRB.

— Heymann’s lemma says that a MI CTRB system, with a preliminary
SSFB, can be made a CTRB SI system.

— For MI CT-LTI system & = Az + Bu, B € R**P, 4 € RP, consider
u=—-Fx+Gv, GERP, b=BGeR”, veR

where b € R(B) and (A — BF,b) CTRB.
e i =(A— BF)z+ BGv=(A— BF)z+ . .
e Here, (A — BF,b) CTRB => CTRB canonical form.
e 1 P s.t., x = P~'Z with pole placement v = —KZ.
e u=—Fzr—GKPzr+v = &= Agz + Bu'.

e Given n eigenvalues, F + GKP not unique with different eigenvectors.
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MI Pole Placement: Example

Th. 8-3M: All the eigenvalues of A;; = A— BK can be arbitrarily assigned by
the state feedback ©u = — Kz iff MI CT-LTI system (A, B) is CTRB.

e u=—-Fr+Guv=—Fz—GKPzx+.

A=[-110:1-30:01 -1 B=[0 0:1 150 1]: >> rank(ctrb(A.8)) >> rank(ctrb(AB<F.B+G))

rank(ctrb(A,8)) ans = e s

F=001:0011:G=[1: 0] 3 3

Ap = A-BxF: b = B=G:

a = charpoly(Ap): K = F + GrKbar*P:
a0 = a(4): al = a(3): a2 = a(2): >> eig(Acl)
ko =24 - a0t ki = 26 - al: k2 = 9 - a2: eiglhcl)
Kbar = [ko k1 k21 ans =
(= [b Apb Aprtpeb]: L K1 = place(A.B.[-2 -3 -4])
-4
barCiny = [al a2 13 a2 10: 10 0]: 3 Kl = K=
P=inv(cCxbarCinv): 70000 2.0000 -1.0000 708 A
-0.0000  1.0000  1.0000 o 0 1

Acl = Ap - BxGeKbar+P:
eig(Acl)

e SSFB cannot change CTRB, but can change OBSV, i.e., w/ SSFB, still
in same CTRB canonical form, yet, new pz-cancelation possible:

2
Hssfb(s) — __b2s"+b1s+b,

3 T o2 7 7 st
fonongjun Lee s3+ay8%+a) s+al, p




State Observer

e Consider CT-LTT system ¢ = Az + Bu, y = Cz. Again, it is typically
expensive/noisy to measure all the state z.

e Open-loop observer: may simply propagate the state according to the
dynamics with observability map to match IC: 7 SE

# = A% + Bu, with estimated £(0) — E S :

- OBSV dynamics: é = Ae, e =1 — % = e — 0 if A is Hurwitz. |

- e(t) 4 0 if unstable A, not robustifiable against disturbance/noise, etc.

e Luenberger observer: incorporate feedback for correction, thereby, im-
prove robustness:

&= A% + Bu+ L(y — C%)

and estimated output.
- OBSV dynamics: with y = Cz,
é=(A—LC)e

- If we can set A — LC Hurwitz = exponentially stable = robust against
non-Hurwitz A and disturbance. o
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State Estimation and OBSV

Th. 8-03: All the eigenvalues of A — LC can be arbitrarily assigned if and
only if (4,C) is OBSV.

oDongjun Lee

e Consider Luenberger observer:
& = A%+ Bu+ L(y — C%)

with the OBSV dynamics: é = (A — LC)e.

e Since A;(A — LC) = Xi(AT — CTLT), this problem is the same as CTRB
of (AT, CT), which is OBSV of (4,C).

e Observer gain L should be set s.t., SSOBYV is faster than SSFB, yet, slower
than noise bandwidth.

e Observer can be used to replace noisy sensor (or be fused together).

o (Bx)i+z=w,u=sin05t+1=A=[0-1;10], B=[1;0],C = [01] =
estimate velocity from position sensing

> 410 131 0]
A=
0 -
oo

5> L= place(h , €, [51i §il)

25.0000 10,0000 WIR
£:5)




Separation Principle

CT-LTI system: & = Az + Bu, y=Cz.
Luenberger state observer: & = A% + Bu + L(y — Cxz).
Feedback of estimated state: u = —Kz + v.

e Controller-observer dynamics: with e :=z — &,

Q-1 2] Q) {2 v-1e 210)

Observer dynamics: é = (A— LC)e = unCTRB & not affected by control.

If e — 0 fast enough, dynamics reduced to & = (A— BK)z+ Bv, y = Cx.

10-dynamics: H(s) = ¥4 = C(sI— A+ BK)™'B (with ((0),e(0)) = 0).

Separation principle:

{A(Asotar)} = {AMA — BK)} U {X4A - LO)}

i.e., we can design state-feedback (A — BK) and state-observer (A — LC)
individually and separately.

©Dongjun Lee

Reference Tracking Control

e So far, we have mainly considered state stabilization using u = —Kz.

e Consider the reference tracking problem: y(t) — r(¢). Then, even just
withu = —-Kz+r,

Y(s) = [C(sI — A+ BK)™'B + D|R(s) = H(s)R(s)
i.e., if H(s) strictly stable with H(0) ~ I (e.g., high gain K), y(t) =~ r(t)
if r(t) is constant or slowly varying.

e It would however be more economical or less aggressive if we can incorpo-
rate feedforward action into the feedback control.

e Consider CT-LTI system & = Az 4+ Bu, y = Cz + Du = from linearity,
for steady-state, we would have:

— — XM Xm
Tss = INgT, Ugs = NyT, N e® , Ny € i

which should satisfy, e.g., for SISO system:

0= Azss + Buss = (AN, + BN,)r
r = Cxss + Duss = (CN; + DN)r
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Reference Tracking Control
e CT-LTI system & = Az + Bu, y = Cz + Du.

For SISO system:
e For system A B AL
C D N, U

e Reference tracking control: ‘u = —K(x—245)+Nyr = —Kz+(KNz+Ny)r. ‘

e CL-dynamics:
#=(A— BK)z + B(KN, + N,)r = (A— BK)xz + BNr
y=Cz+ Du

e Transfer function relation:

Y(s) = C(sI — A+ Bk)"'BNR(s) = 223bstbe _ N R(s)

s34+azs24a;s+a,

e Reference tracking may further improved w/ pre-compensator: with
bos®+bistb, 7
Y(s) = siansiaie, NP(s)R(s)

although still under the same limitations of the model matching (i.e., rel-
ative degree, non-minimum phase zeros, etc.).
o (Ex) £ = —z +u with u = kz + 1 vs u = —kz + (kng + ny)r. =

©Dongjun Lee

Internal Model Control
e Consider CT-LTI system & = Az + B(u + d), y = Cz, where d is a
disturbance, only known to satisfy differential equation noise model:
a=Adk, d=Cat

e Disturbance model: Ay =0, C4 =1 (constant d w/ unknown magnitude);
Ag = [0, —w;w, 0], Cg = [1,0] (sinusoid d with known frequency w).

e Total (augmented) system dynamics:

z\ | A BCy | (= B . T
©)-15 W@+ [2] v=ro01()
e ¢ is not CTRB, yet, may still be OBSV from the output y = estimate &
and use to cancel the disturbance d = Cy€.

e Control design:
‘ u:—K:t:—(i+'v=—[K Cd][z;§]+v‘

with state observer:

()-[2 %1@-[8)~[5]o-on

O
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Internal Model Control |

e Control design:
u=—Kx—J+1J=—[ K Cylz:é+v

with state observer:
@-[2 %)@ [3)er[B)o-en
which can be rewritten as, with v = 0:
(m) _ [ A-BK-IL,C 0 ]+ [ L, ]y
¢ —LyC Aq Ly
o Controller TF C,_,,(s) is given by

sI—A+BK+I,C 0 g
Cyuls) =~ [ K Cd][ Le sI—Ad] [L;]

showing that the control contains characteristic polynomial of the distur-
bance Dg4(s) = IMC.

e IMC will not work if OL-TF contains the same zeros of (sustained) dis-
turbance and reference = unstable pz-cancelation (cf. Th. 8.5). )
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Reduced Order Observer

e Consider MO CT-LTI system: & = Az+ Bu, y = Cz. Then, from y = Cxz,
we may directly extract some state information = no need to estimate.

e Suppose (A, C) detectable. Also, y € RP with rank(C) = p.

e Then, 3 P € R**"s.t., CP = [I), Opx(n—p)| (i-e., from CR = [Cy, Opx(n—p)];
P := R-diag[C{*, I,_,))-

e Define z = Pz, z = [25; 2] = y = Cx = CPz = [2,;0], i.e., y = 2, € RP
and only 2, is needed to be estimate.

1‘111 412

A1 Az

B,

.Then,A:P—lApz[ ],B:P‘le[
B;

] with:

% = A1y + A2azp + Bou
9= Ay + Apzs + Biu

where we may consider the first one state equation to estimate 25, whereas
the second one output equation (with § — A;1y known).

e Define z;-observer:

2y = Agofy + Ay + Bou+ L(y — Any — A1a%, — Biu)

with observation dynamics: é = (Ags — LA1z)e = (432, A12) OBSV? o
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Reduced Order Observer

e Transformed z-dynamics:
% = Ag1y + AzaZy + Bou
9= Any+ Aazp + Biu

with the zb—observer: ,éb = A2225+A21y+32u+L(’y—211y—Algﬁb—élu).
e Observation dynamics: é = (A2 — LAj2)e = (Azq, A12) OBSV?

- _ _ A—-AI
e (A,C) OBSV iff (4,C) OBSV iff (432, A12) OBSV: { c }
SIp - A]] _AIZ _ 0 _AIZ _
rank —A21 SIn_p — A22 = rank 0 SIn_p — A22 =7
I 0 I 0

iff rank [ SI":”A_le” ] =n—p, ie., (A2, A12) OBSV.

e 2,-observer contains (possibly) noisy 3. Define w := 2, — Ly. Then, we
can show that the zz-observer can be rewritten as:

W = (Ag2 — LAp)w + (B2 — LB1)u+ (Aa1 — LAy + Ay L — LAy L)y

with Ags — LA;5 Hurwitz = solve w & extract 2, = w+ Ly =% = Ply; 2.

©oDongjun Lee )

Principle of Optimality
e Principle of optimality (Bellman): Suppose the path (z,,t,)-(z1,%1)-
(zs,ty) is the optimal path for a problem. Then, the path (z1,%:1)-(zy,t5)
is also the optimal path for the same problem starting from (z1,%;).

(Pf) Suppose not. Then, the original path is not optimal = contraction.
e (Ex) Optimal path from A to B with minimum travel time, fuel cost, etc.
1. Start from B = z(N) (i.e., k = N).

2. Given all {z(k+1), Ji,; n(z(k+1))}, compute {u(z(k)), J; n(z(k))}
and construct optimal segment from each z(k).

3. Once hits A = z(0), the optimal path is completed from z(0) to
z(N).

Terminal 5
Manifold of

acceptable

final solutions

(g, ty

t 5 K K+1 i N
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Dynamic Programming

e Dynamic programming via principle- of optimality:
1. Start from k = N and work backward.
2. Given {z(k +1), J5; n(z(k+ 1))}, for all z(k), solve

Jin(z(k)) = min. [Tk k+1(z(k), u(k)) + Jgya,n (2(k +1))]

where z(k + 1) = a(z(k), u(k), k) and Ji x41 is incremental cost.
3. Once hits z(0), construct the optimal path from z(0) to z(N).
e Find global optimum w/o full search (DP ~ (n+1)2—1, FS ~ (2n)!/(n!)?).
e Need to store (u(k), J; y) for all z(k).

e Scale badly with dim(z(k)) = curse of dimensionality. < <*! N

©Dongjun Lee

Hamilton-Jacobi-Bellman Equation

Cousider & = a(z,u, ) with the objective function to minimize:

J(@(to), tor ultor t4]) 1= J = h(a(ty), ty) + / ? g((s), u(s), s)ds

Counsider J(z(t),t, u([t, t7])) := h(z(ts), tf)—l—fttf g(z(s),u(s), s)ds and de-
note its optimum (with specific optimal control applied) by

7o) = min [ [ " g(a(s), u(s), s)ds + patts)oes)|

u([tty])

e Principle of optimality then requires:

t+3
I*(at)1) = min_ [ [ 9(2(5), u(s), 8)ds + J* (3t + 8), £ + )

o Taking § — 0 with dz = a(x, u,t)d, we then obtain HIB equation:

oJ*
ot

oJ*
or

a(z(t), u(t), t)] =0

+ min | g(z(¢t), u(t),t) +
A @)y (@(6).) -
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HJB Equation w/ Hamiltonian
e For & = a(z, u,t) with cost function J = h(:v(tf),tf)—f—fttof g(z(s),u(s), s)ds,
HJB equation is given by:

*

oJ*
Oz

+ min [g(a:(t),u(t),t) + a(z(t),u(t),t)| =0

ot u()

e Define Hamiltonian: with J7 := %—‘Z and Jf = 83‘7;,

H(z(t), u(t), J5 (2(t), 1), 1) == g(z(t), u(t), 1) + Tz ((£), 1) - a(z(t), u(t), 1)

e We may then rewrite HJB equation by

T (@(8). 1) + min H(a(t),u(t), L (0. 0),6) = 0

or, with optimizer u*(¢), J; (z(¢),t) + H(z(t), v*(t), J2(z(¢),t),t) = 0.
e HJB equation defines a backward PDE w/ BC J*(z(t5), ts) = h(z(t5),ty);

the state z integrated forward in time from (%(%,), o) with u(J%(2(t),t), z(¢), t).

e HJB is sufficient & necessary condition for the global optmal control!
Difficult to apply in practice though. =

HJB Equation - Example

e For & = a(z, u, t) with cost function J = h(z(iy), tf)—f—ftaf g(z(s),u(s), s)ds,
HJB equation is given by:

JE(z(t),t) + I&lit)l H(z(t), ult), J5 (z(t),t),t) =0

where H(z(t), u(t), J; (2(t), £), 1) := g(2(£), u(t), )+J3 (2(2), t)-a(z(t), u(t), ?).

o (Ex 3.11-1) For & = z + u, find optimal control to minimize

T
J=12(T) + / 12 (5)ds
0

— HIB: J{ + min, H(z,u,t) = 0 with H = 3u? + J2(z + u).
— Find u*: % =0= u* = -2J}(z,t) w/ %’} = 1 (i.e., minimizer).
* * 2 &
— Need to solve PDE of J*: % - %) + %x = 0 with boundary
condition J*(z(T),T) = 3z*(T).
— Assume optimal cost J*(z,t) = ;K(t)z* with K(T) = ; for BC.
—HIB: [A1K - K2+ K]z?=0= K(t) =T t/(eTt + e TH) = 1.

O
oDongjun Lee &)
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Continuous-Time Finite-Horizon LQR
e Consider linear & = A(t)z(t) + B(t)u(t) with quadratic cost function:

J =1z Hey + /t ’ 2 [T ()QVz (L) + uT () R(L)u(l)] dt

Lo

where H,Q > 0 and R > 0, all symmetric; and ¢y is fixed (not zy).
e Hamiltonian: H(z,u, J},t) = 3 [27Q(t)z + uT R(t)u] +J; [A(t)z+B(t)u]

o min, H: 2 =0 = u*(t) = R~ ()BT (1) 27 (x(t),t) w/ ZH =R > 0.

e HIB: 0= J; +327Qz— §J3 BT R™'BJ; + J; Az with J*(t5) = 327 Haxy.

Choose J*(z(t),t) = 327 (t) P(t)z(t), with P(t) = 0 symmetric.

e HIB: 0= 1z[P+Q— PBR'BTJ:T + PA+ AT Plz.

e Oplimal control: u(l) = —R=*()BT(1)P(t)z(l) (linear state feedback)

e DRE (differential Riccati equation: offline solved/stored ahead of time):

—P=PA+ATP+Q—-PBR'BTP, from P(t;)=H

©Dongjun Lee

Continuous-Time Infinite-Horizon LQR

e Consider LTI system & = Az + Bu with quadratic cost function:

J= /0 - 1 [T (0)Qz(t) + uT (t)Ru(t)] dt

Suppose (4, B) STLB, Q = CTC > 0 with (4,C) DETB, R » 0.

— (A, B) not STLB or (A,C) not DETB = z — oo (unstable).

— (A, B) STLB and (A,C) DETB = z — 0 (stable) = H =0.

— P(t) —» Py = 0, as t — 0, which is also unique solution of ARE
(algebraic Riccati equation):

PA+ATP+Q—-PBR'BTP=0

— ARE can possess many solutions, yet, only one solution if PSD.

— Py > 0iff (4, B) STLB and (4, C) OBSV (i.e., more control needed).
— Intinite-Horizon LQR control:‘ u(t) = —R1BT Pyx. ‘

— CL system with P, still asymptotically stable.

— Optimal cost: J*(z(0),0) = 127 (0) Poo(0).

O
oDongjun Lee &)
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Gain Selection
Consider LT1 system # = Az + Bu with quadratic cost function:

J= / = 1 2T (1)Qz(t) + uT (t)Ru(t)] dt

With (A, B) STLB, choose Q = C*TC s.t., (4,C) DETB and R > 0.

e For LTV (or FH-LQR), offline solve DRE backward in time with BC
P(t;) = H to obtain P(t) and store K(t) = —R~1(t)BT (t) P(t).

e For LTI (w/ IH-LQR), solve ARE to obtain Py, = K = —R"1BTP,,.

e Gain selection @, R.

1 1
LT a2 [0 ®

Q= , R=p
1

Tn @202 [

where 7; is time constant for z;; :11r:nmx is constraint on z;; u ax 1S constraint
on u;; and p is a weighting factor between regulation performa.nce and
control effort.

o| Robustness of LQR: GM = oo, PM > 60°. ‘

©Dongjun Lee

8%

LOR: Examples
Counsider a scalar LTI system £ = az + bu (b # 0) with quadratic cost function:

o0
J=/ [Qz% + Ru®ldt, Q>0,R>0
0 Q

e With b # 0 = CTRB,; C=\/_750=>OBSV
e Riccati equation: —P = 2aP + Q — ¥E2 with P(t) > 0. P 0 \
e Optimal control: v = K(¢)z(t) or u = <xJac(t) lan

u(t)=—%P(t)w(t) (via DRE) or u(t):-l—”2  (t) (via ARE)

[Koo: Poos A(Ac1)] = 1ar(A,B,Q,R) = Po, = 20.9398, K, = —0.5758.
P, can be directly obtained from quadratic ARE (postive root):

2 2
Py = 4;‘” s Q/E

e This P, is in fact a stable equilibriutm of DRE backward in time, i.e.,
with s =t; —t, ds = —dt, DRE becomes

4P _ 24P+ Q- Y| = 4P _ g with P = Py

R
oDongjun Lee B4
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® Poo = —Vz7z—— is GAS equilibrium of DRE for P(tz) > 0:

LQR: Examples

a++4/a?2+b2Q/R

9P _aP+ Q- Y2 = ‘P(S)—)Poo if P(t;) >0

P K State x
25 0 ya 1
S E— i ARE /
20 — O / 08 ARE
~ /
\ 0ol /
15 \ 06
\ 03
10 04
041 /
5 N 2
DRE \ -05h . 0.2
ARE AN g
0 0.6 0 N =
0 05 1 15 2 0 05 1 15 2 0 05 1 15 2
P K
2 o , State x
DRE DRE
— ARE
20 0t o0 ARE
02 |
15 \ | 06
\ 03 |
10 \ i 04
\ -04 |
2 DRE 05 / 2
ARE \\ /

0 - 06 0 -
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Using P, K instead of P(t), K(t) adequate unless time-horizon is short
and terminal condition is important (time-varying gain necessary). -

oDongjun Lee

LQR: Examples

Consider a scalar LTI system & = az + bu (b # 0) to minimuze

J=/ [Qz® + Ru®ldt, Q>0,R>0
0

Infinite-horizon LQR: u(t) = — & Pooz(t) with Ps, = a+1{:§-/|-1b:Q/Rl

v a24222
Closed-loop dynamics with Py, and K, = —% = —w:

:i:=ax+bu=ax—b2—£&z=— a2—|—szQ-:1: = AS (ES)
Cheap control: % = o0, Ko = —% =z = —b%:z; =z — 0 very
quickly with large control cost.

Expensive control: € — 0, Koo = —1[a+ |a]] = u = —1[a + |a|]z

— If a > 0 (ie., OL-unstable) = u = —2¢z = CL-dynamics:
(i.e., symmetric OL/CL poles).

— If a < 0 (i.e., OL-stable) = => & = az with £ — 0 (i.e., avoid

using expensive control at all).

W%
(&4
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LOR: Examples
Consider a scalar LTI system & = az + bu (b # 0) to minimuze

o
J=/ [Qz% + Ru?ldt, Q>0,R>0
0

e Infinite-horizon LQR: u(t) = —%Pooz(t) with Py, = @.

/R
. K State x
e Expensive control ° —— 1|
0.005 3l ARE
Q = 7, R = 400, A == —3 2001
0.015 [ 06
D2 04
0.025
0.2
-0.03 —
-0.035 0
0 0.5 1 15 2 25 3 [ 05 1 15 2 P 3
K State x
e Cheap control 0 “
02 pe AR
Q=7R=4,A=-3. .
0.4
0.6
0.6 “
| 04
0.8 ‘\
12 4 0
0 05 1 {iS) 2 25 3 0 0.5 1 15 2 25 3
foDongjun Lee )
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LQR: Examples
. . o . . X- " =45 degree:
Consider #; = z3, £2 = « to minimuze A N E
" — .
_ 2 2 K0
J= / [zF + ru®]dt e
o o
01 0 1 0
0A=[0 0 ,B= 1 , Q= 01 =0and R=7r>0.

e (A,B) CTRB and (4,C),C=[1 0 ] with @ =CTC OBSV.

e Solve ARE 0 = PA+ ATP+ Q- PBR'BTP for P= [ P P12 ] =

D12 P22
1 1
P= ‘/51" * ", |, which is PD with py; > 0 and py1pes — 2, > 0.
r2 \/57'4

e Optimal gain K = —1BTP=—[ =2 2r 1 |.

r

0

1
T2

e CL-dynamics: Aq = A+ BK = [ B _ \/lr_ 1 ] with symmetric

eigenvalue pattern:

R

oDongjun Lee
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Estimation Problem with Noises
e Consider LTT system:

¢=Az+ Bu+ Bw, y=Cz+v

with w € R™ process noise (e.g., model uncertainty) and v € R™ mea-
surement noise (e.g., sensor noise).

e Assume uncorrelated zero-mean Gaussian for w € N(0,W) and v €
N(0,V), ie., E[w(t)] =0 and E[v(t)] = 0 and

Elw(t)w” (t2)] = W(£)d(ts —t2), Elu(t1)v” (t2)] = V(£)d(t —t2)
Efw(ti)v” (t2)] = 0 '

Hil
{

2

e Luenberger observer:

| $=A2+ButLly—j) |

with estimation error dynamics: é = (A — LC)e + Bw + Lw.

e Mean estimation: | E[é] = (A — LC)El[e] = Ele] — 0.

e Large L results in faster E[e| — 0, yet, larger amplification of v (i.é;, wide
scatter or large covariance P.(t) = Ele(t)eT (t)] about z) = optimal L?

iy
U

©Dongjun Lee
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Linear Quadratic Estimation (LQE)
LTI system: & = Az+ Bu+ Bw, y=Cz+v, w e N(O,W), v e N(0,V).

= e(t) = N (0, P.(t))

State estimator: ‘ £=A%+ Bu+ Liy—19)

Optimal estimation: for CT-LTI system with Gaussian w, v, given y(7),

7 € [0, %], design estimator to minimize J(t) = trace[P.(t)].

lldA 1
by

e Covariance evolution: 3

P.=[A—LC|P. + P.JA— LC|T + BWBT + LVL" BESSS

=AP. + PAT+ BWBT + LVLT — P.CTLT — LCP,
e ARE for LQR can be written as: with K = —R~!BTP,
—P=ATP4+ PA+Q+KTRK + PBK + KTBTP

e Kalman gain: from similarity, LT = V~CP, =>‘L = P.(t)CT(t)V1(¢). ‘

e Covariance evolution with Kalman gain L:

| P.= AP, +P.A" + BWB" - P.C"V'CP. |

e Duality of LQR and LQE: (4, B) = (AT,C7), (Q,R) ~ (BWBT,V),
(Kr P) ~ (_LTr Pe)- s

oDongjun Lee
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Kalman-Bucy Filter
Kalman-Bucy (LQE) filter:
=A%+ Bu+L(y—9), L=P.@)CTH)V ()
P. = AP. + P.AT + BWBT — P.CTV~ICP., #(0),P.(0)

e Given P,(0), solve P,(t) forward in time (offline and store).
e —K =1qr(A,B,Q,R), L = 1qrT(AT,CT,BWBT,V) (A+ BK/A—-LC).
e [ = P,CTV~! 1 « if state uncertainty P, 1 or sensing uncertainty V |.

o P.: 1) P. propagates through state dynamics; 2) increase due to process
noise BW BT; 3) decrease due to sensing P.CTV~1CP. (i.e., innovation).

e For LTI system, if V > 0, (A,C) DETB, (A, B) STZB, P.(t) —» P> = 0,
which is also PSD unique solution of ARE:

| AP.+P.A" + BWBT — P.C"V~ICP. =0 |

with P > 0 iff (4, C) DETB and (A, B) CTRB.
e Filter with L = P CT (¢)V~1(t) still asymptotically stable.

©Dongjun Lee

Kalman Filtering w/ No Uncertainty

e Linear discrete plant dynamics with measurement (cf. EKF, UKF):

Tpt+1 = Frxr + Grug, yx = Hipwg

where z € R is state, ux € R? input, and yx € R™ measurement output.

e If Fy, Gk, ux known (impractical: to be relaxed), state estimator:

Tgy1k = Frdgp + Grus

where £41x is prediction of x4 given “best” estimate 2 of zx prop-
agated via dynamics over [k, k + 1] (can’t do any better than this).

e Now, suppose measurement yiy1 given at k + 1. Then, how to update
Zx41)x using this information?

e First of all, the estimate £ 1)x41 of Txy1 should be consistent with this
information yx+1 = Hg41Zk+11, i-€., e Brpajk

orthogonal wrt |

-'ﬁk+1|k+1 €N:= {ZB eRr" | Y41 = Hk+1.'L‘}

b

s WR
oDongjun Lee Q= B4
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Kalman Filtering w/ No Uncertainty

Estimate &y1jx+1 of Tx41 should consistent W/ Yr+1 = Hrp1%Tp41, i€,

ﬁk+1|k+1 eN:= {m eR” | Yk4+1 = Hk+1m}

Optimal estimate 1|11 = correction of £;,; into its closest point
on {2 with Euclidean norm.

e Using §:k+1|k+1 — ﬁk+1|k = Hg_i_la and Y41 = Hk+1§7k+1|k+17

. A T T \—1 .
Erp1ipr1 = Erepp + Hipr (Her1Hey1) ™ (Y41 — Jrta]

where Jx41 = Hyi18x41)% (best estimated output).
e Kalman filtering w/ no uncertainty: with oo,
. Plant: zy1 = Fray, + Grux w/ measurement y, = Hyxy Q=
. Prediction (propagation): Zxi1)x = FrZx + Grus
. Measurement {(output): yx+1 = Het1Zk+1

. Estimated measurement: {1 = Hk+1§:k+1|k

Ot AW

. Correction (update): £xi1jk+1 = Zx1jetHigy 1 (Her1Higy 1) ™ [Yer1 — Gea]
oDongjun Lee =

Kalman Filtering w/ Process Noise

e Plant dynamics with measurement and process noise vg:

Tpt1 = Fpzp + Grug + vk, yr = Hyxp

where v € R™ zero mean Gaussian w/ Efvg] = ¥ = 0 and covariance
E[(vk — t)(vk — U%)T)] = Vi € R™*" (e.g., uncertainty in actuation uz,
modeling Fy, G, unmodeled friction/slip, discretization).

e Now, z; becomes RV = need to estimate its mean and also covariance
too, i.e., starting from (£gj0, Pojo),
— Prediction (Zxy1|k, Pit1jk): by propagating (&g, Pex) via plant
dynamics with uncertainty Vj, due to process noise.
— Correction (£x11)k41; Pretap+1): by using re41 = Y41 — Jk41 with
uncertainty Sg41 of 741 also taken into account.

e Prediction:

— State (mean) prediction:| Zr 1k = Felppe + Grus |

— Uncertainty (covariance) propagation:‘ Pryik = FkPk“:FE + Wi ‘
where Pk+1|k = E[(ﬁk+1|k - (L‘k+1)(£’l\7’ﬁ+1lk - E]H_])‘l ], i.e., uncerta.inty
from perfect estimate zx ) (w/ vx independent from zx, Zyx). =

oDongjun Lee




Kalman Filtering w/ Process Noise

e Plant dynamics with measurement and process noise vg:

o Tri1ik

‘ ZTrt+1 = Frxp + Grug + v, Yy = Hrpzg ‘

e Prediction:
— State (mean) prediction: Zxy1)x = FrZr + Grux
— Uncertainty (covariance) propagation: Pyi1jx = FxPepFL + Vi

o Now, given yx; is given. how to update (ﬁk+1|k, Pk+1|k) — (j?k-l-l]k-;-l, Pk+1|k+1)
while minimizing uncertainty?

o . 1
Era1ky1 =argmin——————¢
] TER" 4/ (21r)"|Pk+1|k|

subject to £gy1jx41 € @ := {z € R® | yr41 = Hpy17} = equivalent to:

o Tp—1 -
_%(E_zk+1|k) Pk+1|k(m_zk+1|k)

.1 . _ . .
min 5(:1: — mk+1|k)TPk_:1|k(a: —Zgy1k),  subj. to yry1 = Hepaz

¢ Mahalanobis metric more weight and updating action for chan-
nels with smaller Py (i.e., high certainty).

©Dongjun Lee

Kalman Filtering w/ Process Noise

e The estimate 251541 should again be consistent with yg1 = Hgi1Zk+1:

:i'k+1|k+1 cQ:= {:L‘ € R" | Yr4+1 = Hk+1$}

e Optimal estimate £541x41: correction of &3 into its closest point on
1 with Mahalanobis norm P, +11| &
A o —1
[ ] USlng zk+1|k+1_$k+1]k = Pk+1|kH,?+1a (J_ null(H) w.r.t. Pk-l—l,k)’ Ye+1 =
Hy 1%k, and Jrq1 = Hyp1841% (best estimated output):

Eptr)k+1 = Tk + Kit1 - [Urt1 — Jrpa]

T —1 T
Ki+1 = Pey1eHi11Scr1, Skt = Hepa Py Hi gy

— Residual covariance Sy 1: uncertainty in g1 (solely due to §xt1);
— Kalman gain Kj,;: more update action for more uncertain state
with more certain measurement information.
e Uncertainty update (reduction):
Per1jerr = B [@erajerr — Trr1) Errajers — Trg)” ]

T o-1
‘ = Pryak — Pryae Hir1 Sp i1 He1 Py gk ‘

O
oDongjun Lee B4
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Kalman Filtering w/ Process Noise

Plant dynamics with measurement and process noise vy:

Trt1 = Frzp + Grug + vk, yr = Hgxg

Prediction:
Zr1)k = Fedpx + Gruk (state prediction) 5
@ Tk+1lk

Pre= FkPkp,Fff + Vi (uncertainty propagation) //7

/ orthogonal wrt Pfi..c
o Measurement: yx41 = Hey12k and g1 = Hiadeyape Z SBrtl ks

e Correction: fﬁg(,“\\&m
Erp1jk+1 = B + Kigr - [Yk+1 — Trva] (state correction)

Pk+1|k+1 = Pk+1|k — Pk+1|kHZw+1Sk__:1Hk+1Pk+l|k (uncerta.inty reduction)

— Redisual variance: Sk41 = Hrq1Pey1pHiy 1 (= Elresiriyq))
— Kalman gain: Kiy1 = PeyqeHE 1 Sh
— Uncertainty always reduced with certain measurement info yy.

— H=1= P41 — 0, i.e., perfect estimation with ygi1 = Tr41-

©Dongjun Lee

Kalman Filtering

e Plant dynamics with process noise vy and measurement noise wy:

Trt1 = Frzp + Grug + vk, yr = Hpzp + wi

wx € R™ zero mean Gaussian w/ E|wg] = wr = 0 and covariance E[(wy, —
) (wg — 'u')k)T)] = Wi € R™*".

e Prediction (same as before):
Zrs1jk = Fadrr + Grug (state prediction)
Piy1jk = Fe PP + Vi (uncertainty propagation)
e Measurement: yri1 = Hry1Zk + wi and §ry1 = Heyp1Zp 1k

— Both yr41 and g1 are now RVs with uncertainty, Wi ; and Wk+1.
— Given yk+1, real measurement would likely distributed by N (ye41, Wet1)-

— For {41, its covariance given by

Wit1 = E [(@k+1 — HeTos1) Gt — Hi1%r41)7] = Hesr Pere Hi

— Given N(yx11, Wit1) and N (911, We11), most like output y}: 117

oDongjun Lee
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Kalman Filtering

 Merge measurement info N (yk41, Wr+1) and estimated measurement info
N (Jk+1, Wiy1) using product of Gaussians {cf. Th.8.2.1) = most like
measurement: y;,, = product(yx41,Jk+1), which is still Gaussian with

Yar1 = Pk + Wi Sity - [Uh41 — kg1 (mean)
Wi = Wi — Wi S{$1Wk+1 (covariance)

where Sg1 = Wiy + Wi = Hk+1Pk+1|kHE+1 + Wk, ie., combined
uncertainty in r¢y1 = Jr4+1 — Y1 (residual variance).

. . o . ® Ty 13
e With y7, , as best measurement, estimate £z, 1\x41 should again be /
k+1 +1|k+ /

consistent w/ that information: 1
/orthogonal P2

X« z .
Errrpets € Qur,, ={z € R" | ypyy = Heaz} Ktk

e Optimal estimate £ ;x41: correction of £ into its closest point on
Qy;H with Mahalanobis norm P -I}ll B

N _ A T 1ir—1 * -
Zrr1)k+1 = Tet1)k + Porre Hera Wiy - [yk+1 - yk+1]

R T a—1 .
= Erp1jk + PerapeHe 41 S5h - Wk — 1]

©Dongjun Lee

Kalman Filtering

e Most like measurement: y;,, = product(yx+1,Jk+1) With

N o —1 N
Ykt1 = Pr+1 + Wk+15'k+1 - [k — Gl (mean)
i 1 -1 1i .
Wi = Wit — W1 S Wi (covariance)
. . z
Sky1 = Hrp1PeyrpHiy + Wi (vesidual variance) * “F*ilk

e Optimal estimate £341jk41: Jorthogonal P+,

o o T a—1 W\
Epr1jk+1 = Enr1pk + PoripHe1Segr - [Ye+1 — Jry1] |

which is in the same form as before (yet, different residual variance Sk1 =
Hyy1Pey1HiL,y + Wiy instead of Sgy1 = Hey1Pey1pHiy)-

e Uncertainty update (reduction):
Petije+1 = E [Brrapetr — o) Ertaprr — Tra1)” ]
—E [((I — P Hi 1 Si 1) Grpnpe — @) (- .)T:I
= Petajk — PorreHip1Siia Hir1 Py

which is again in the same form as before.

WR
oDongjun Lee 2]
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Kalman Filtering

Plant dynamics with process noise v and measurement noise wg:

Tr41 = Frxp + Grug +vg, Y = Hpop +wi

e Prediction:

Zry1)k = Felgp + Grur (state prediction)
Pevapk = Fe P FE + Vi (uncertainty propagation)
¢ Measurement: yxi1 = Hy41Z5 + wWet1 and Jry1 = Hep1Epqax /\ =
e Correction: :
Err1k+1 = Trpa ke + K1 - [Yer1 — Jra] (state correction)
Pryyjkt1 = Prpag — Pk+1|ng’+1Sk_ ilHk+1Pk+1|k (uncertainty reducti?Iill
— Redisual variance: Sky1 = Hypq1Pey1nHE ;1 + Wi : W :I/k/
— Kalman gain: Kit1 = PeyapHiyqSpyy St x vesecone /1;?/'3:“:

— K41 automatically and optimally adjusting, incorporating measure-
ment uncertainty and state estimate uncertainty.

— With Hy = I: 1) If Wiyq =0 = Ky = I and Pypqppyr = 0; 2) If
Wi1 =00 = Kgt1 =0 and Peyajp1 = Prj-

©ODongjun Lee &)

Linear Quadratic Gaussian (LQG)

e Consider CT-LTT system:

t=Arx+Bu+w, y=Czx+v

where w € N(0, W(t)), v € N(0,V(¢)) are zero-mean Gaussian. We want
to design optimal control to minimize quadratic cost function:

= lim E 1 T T T
J =lm E |- /(; [z* (£)Qz(t) + u” (t)Ru(t)]dt

e LQG solution:|u = —Kyqr - £ with the Kamlan estimation 2.

— Combination of optimal control (LQR) and optimal estimator (KF
or LQE).

— CL-system stability guaranteed from the separation principle.
— Optimal over all causal, linear and even nonlinear controllers.
— Robustness not guaranteed — RS/RP, loop shaping, LTR, etc.

R
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