Chapter 5
Velocity Distributions in Turbulent Flow

* Comparisons of laminar and turbulent flows

* Time-smoothed equations of change for incompressible

fluids
* The time-smoothed velocity profile near a wall
e Turbulent flow in ducts

e Turbulent flow in jets




Comparisons of laminar and turbulent
flows
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Velocity profiles
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Time-smoothed equations of change for
incompressible fluids

* The actual velocity in a point l
|
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* Local velocity as a function of

time.
 a)Time independent

 b) Time dependent

Velocity

Time i
(b
"Transport Phenomena" 2nd ed,
R.B. Bird, W.E. Stewart, E.N. Lightfoot



Some relationships
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Time smoothing of the equations of change

* Introducing

U, = Uy + U, v, = Uy + vy
v, =V, + v, p=p+p

* into equations of continuity
i(vx+vx)+ (vy+vy)+i(vz+vz)_0

e Time-smoothed equation of continuity

0
a(ix)+ (vy)+ (vz) =0




Time smoothing of the equations of change

into equation of motion (x-component)

a — / — !/ a - !/ — !
_ (ap(vx +v) (v, +v,) + @p(vy + vy)(vx + vy)

o _ _
+Ep(vz + ;) (U + vx)> +,u\72(vx +vx) + pYx



Time smoothing of the equations of change
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Momentum transport associated
with the turbulent fluctuations



Remarks

 The equation of continuity is the same, except that:

v is replaced by v

* Inthe equation of motion v and p are replaced by:

v by v and p by p

* In addition, it appears the boxed term associated with
the turbulent fluctuations.




Turbulent momentum flux tensor

e Definition

—(t) _ ] =(t) _ 77 =(t) _ 77
Txx = PUxVy Txy = PUxVy, Txz = PUxVy

* Then
(v-v)=0 and (V-v')=0

0
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The time-smoothed velocity profile near a
wall

(1) Viscous sub-layer
(2) Buffer layer

(3) Inertial sub-layer
(4) Main turbulent
stream
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The time-smoothed velocity profile near a
wall

* Viscous sub-layer, viscosity plays a key role

* Buffer layer, transition between viscous and inertial

sub-layers
* Inertial sub-layer, viscosity plays a minor role

* Main turbulent stream, time-smoothed velocity

distribution is nearly flat and viscosity is unimportant



The logarithmic velocity profiles in the
inertial sub-layer

* \Velocity gradient (does not depend on viscosity)

v, 1 7,1
dy Kk |pYy

where 7, is the shear stress acting on the wall y is
the distance from the wall

* Definition of the friction velocity v,




The logarithmic velocity profiles in the inertial
sub-layer

* |ntegrating

U
Ex = ;ln(y) + A

« A'is aintegration constant. Constant are determined by
experiments

Ux _ 55 ( v*)+55 % < 30
b n\y3 : for iy




Taylor-series development in the viscous
sub-layer

* Taylor-series development

_ _ av,
U (¥) = v,(0) + W

e Shear stress for steady flow in a slit of thickness 2B
T =T + 70 = —nll = (y/B)]
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Coefficient
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Taylor-series development in the viscous
sub-layer

e Assuming the next term and
determining the coefficient experimentally
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Empirical expressions for the turbulent
momentum flux

* The Eddy viscosity of Boussinesq. In analogy with
Newton’s law of viscosity

« u® js the turbulent viscosity
(eddy viscosity: property of flow)




Empirical expressions for the turbulent
momentum flux

* Expressions of eddy viscosity for some special cases:
* For wall turbulence, valid only very near the wall

(0 — Yox &
2 ”(14.&) 0<7 <5

* For free turbulence

3 — =
,'_L - pKE]b(ﬂz,max - Uz,min)

where b is width of mixing zone
K, is empirical parameter, dimensionless




Empirical expressions for the turbulent
momentum flux

* The mixing length of Prandtl

v,
dy

do,
dy

70 = —pP

WX

* For

* Wall turbulence
(y=distance from the wall)

* Free turbulence
(b=width of the mixing zone)

I=H'-Ey

I=H.'2b




* Experimental
: measurements
Turbulent flow in ducts
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Average velocity in a circular tube
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