Chapter 10. Shell energy balances and temperature distributions in solids and laminar flow

- Shell energy balances, boundary conditions
- Heat conduction with a electrical heat source, a nuclear heat source, a viscous heat source, and a chemical heat source
- Heat conduction through composite walls
- Heat conduction in a cooling fin
- Forced and free convection

10.1 Shell energy balance

	rate of	} _ <	rate of	} + {	rate of	} {	rate of	}
Į	energy in		energy out		energy in		energy out	
	by convective		by convective		by molecular		by molecular	
	transport		transport		transport		transport	

 $\begin{cases} \text{rate of} \\ \text{work done} \\ \text{on system} \\ \text{by molecular} \\ \text{transport} \end{cases} + \begin{cases} \text{rate of} \\ \text{work done} \\ \text{on system} \\ \text{by molecular} \\ \text{forces} \end{cases} + \begin{cases} \text{rate of} \\ \text{energy} \\ \text{production} \end{cases} = 0$

Boundary conditions

- Specified temperature at the surface
- Given heat flux normal to a surface
- At interfaces:
 - Continuity of temperature
 - Continuity of heat flux normal to the interface
- At solid-fluid interface: $q = h(T_0 T_b)$
 - To, solid surface temperature
 - Tb, bulk fluid temperature

10.3 Heat conduction with a nuclear heat source

- Spherical nuclear fuel element.
- The heat source

$$S_n = S_{n0} \left[1 + b \left(\frac{r}{R^{(F)}} \right)^2 \right]$$

$$S\left[\frac{energy}{volume * time}\right]$$

 Spherical shell of thickness Δr

"Transport Phenomena" 2nd ed., R.B. Bird, W.E. Stewart, E.N. Lightfoot

Shell balance for the nuclear fuel

- Rate of heat by conduction
 - In at r $q_r^{(F)}|_r \cdot 4\pi r^2 = (4\pi r^2 q_r^{(F)})|_r$
 - out at r+ Δr $q_r^{(F)}|_{r+\Delta r} \cdot 4\pi (r+\Delta r)^2 = (4\pi r^2 q_r^{(F)})|_{r+\Delta r}$
- Rate of thermal energy produced by nuclear fission

$$S_n \cdot 4\pi r^2 \Delta r$$

• Introducing these terms into the shell balance for the nuclear fuel and dividing by $4\pi\Delta r$

$$\frac{d}{dr}(r^2q_r^{(F)}) = S_{n0}\left[1 + b\left(\frac{r}{R^{(F)}}\right)^2\right]r^2$$

• For the cladding

$$\frac{d}{dr}\left(r^2q_r^{(C)}\right)=0$$

- Integrating both equations
 - For the nuclear fuel

$$q_r^{(F)} = S_{n0} \left(\frac{r}{3} + \frac{b}{R^{(F)2}} \frac{r^3}{5} \right) + \frac{C_1^{(F)}}{r^2}$$

• For the cladding

$$q_r^{(C)} = + \frac{C_1^{(C)}}{r^2}$$

- Boundary conditions
 - B.C. 1: at r = 0, $q_r^{(F)}$ is not infinite
 - B.C. 2: at $r = R^{(F)}$, $q_r^{(F)} = q_r^{(C)}$
 - B.C. 3: at $r = R^{(F)}$, $T^{(F)} = T^{(C)}$
 - B.C. 4: at $r = R^{(C)}$, $T^{(C)} = T_0$

Solving the equations

• Using BCs 1 and 2

$$q_r^{(F)} = S_{n0} \left(\frac{r}{3} + \frac{b}{R^{(F)2}} \frac{r^3}{5} \right) \qquad \qquad q_r^{(C)} = S_{n0} \left(\frac{1}{3} + \frac{b}{5} \right) \frac{R^{(F)3}}{r^2}$$

 Substituting the Fourier's law and integrating

$$T^{(F)} = -\frac{S_{n0}}{k^{(F)}} \left(\frac{r^2}{6} + \frac{b}{R^{(F)2}}\frac{r^4}{20}\right) + C_2^{(F)}$$
$$T^{(C)} = +\frac{S_{n0}}{k^{(C)}} \left(\frac{1}{3} + \frac{b}{5}\right)\frac{R^{(F)3}}{r} + C_2^{(C)}$$

Results

• Using BCs 3 and 4

$$T^{(F)} = \frac{S_{n0}R^{(F)2}}{6k^{(F)}} \left\{ \left[1 - \left(\frac{r}{R^{(F)}}\right)^2 \right] + \frac{3}{10}b \left[1 - \left(\frac{r}{R^{(F)}}\right)^4 \right] \right\}$$
$$+ \frac{S_{n0}R^{(F)2}}{3k^{(C)}} \left(1 + \frac{3}{5}b \right) \left(1 - \frac{R^{(F)}}{R^{(C)}} \right)$$

$$T^{(C)} = \frac{S_{n0}R^{(F)2}}{3k^{(C)}} \left(1 + \frac{3}{5}b\right) \left(\frac{R^{(F)}}{r} - \frac{R^{(F)}}{R^{(C)}}\right)$$

10.4 Heat conduction with a viscous heat source

- Friction in the fluid produces heat
- Mechanical energy degraded to thermal energy
- Fluid temperature T only a function the of radius

"Transport Phenomena" 2nd ed., R.B. Bird, W.E. Stewart, E.N. Lightfoot

Our system for small b

"Transport Phenomena" 2nd ed., R.B. Bird, W.E. Stewart, E.N. Lightfoot Momentum and temperature balances

• Combined energy flux vector

$$\mathbf{e} = (\frac{1}{2}\rho v^2 + \rho \hat{H})\mathbf{v} + [\mathbf{\tau} \cdot \mathbf{v}] + \mathbf{q}$$

• Velocity distribution

$$v_z = v_b(x/b)$$
, where $v_b = \Omega R$

Momentum and temperature balances

• Energy balance over a shell with dimensions Δx , W, and L

$$WLe_x|_x - WLe_x|_{x+\Delta x} = 0$$

$$e_x = \left(\frac{1}{2}\rho v^2 + \rho \widehat{H}\right) \cdot v_x + \tau_{xx} \cdot v_x + \tau_{xy} \cdot v_y + \tau_{xz} \cdot v_z + q_x$$

Differential Equations

• Dividing by Δx WL and taking limit $\Delta x \rightarrow 0$

$$\frac{de_x}{dx} = 0$$

 $e_{r} = C_{1}$

• Integrating, no possible to evaluate C₁

• Introducing e_x . Convective transport is zero ($v_x = 0$)

$$e_x = \tau_{xz} \cdot v_z + q_x$$

Differential Equations

 Work by molecular mechanisms, v_z only velocity no zero and heat transport by molecular mechanism

$$\tau_{xz} = -\mu (dv_z/dx) \qquad -k \frac{dT}{dx}$$

• Energy balance

$$-k\frac{dT}{dx} - \mu v_z \frac{dv_z}{dx} = C_1$$

1000

- Introducing v_z.
 - Second term: rate viscous heat production per unit volume

$$-k\frac{dT}{dx} - \mu x \left(\frac{v_b}{b}\right)^2 = C_1$$

Differential Equations

• Integrating

$$T = -\left(\frac{\mu}{k}\right)\left(\frac{v_b}{b}\right)^2 \frac{x^2}{2} - \frac{C_1}{k}x + C_2$$

• Using the BCs:

at
$$x = 0$$
, $T = T_0$
at $x = b$, $T = T_b$

for
$$T_b \neq T_0$$

 $\left(\frac{T-T_0}{T_b-T_0}\right) = \frac{1}{2}\operatorname{Br}\frac{x}{b}\left(1-\frac{x}{b}\right) + \frac{x}{b}$

Temperature distribution

• Brinkman number

$$Br = \mu v_b^2 / k(T_b - T_0)$$

 $Br = \frac{viscous \ dissipation}{Heat \ transport \ by \ molecular \ mechanisms}$

Temperature distribution

$$T_b = T_0$$

$$\frac{T-T_0}{T_0} = \frac{1}{2} \frac{\mu v_b^2}{kT_0} \frac{x}{b} \left(1 - \frac{x}{b}\right) + \frac{x}{b}$$

the maximum temperature is at $x/b = \frac{1}{2}$

temperature dependence of the viscosity

10.6 Heat conduction through composite walls

Results

• Heat flux

$$q_0 = \frac{T_a - T_b}{\left(\frac{1}{h_0} + \sum_{j=1}^3 \frac{x_j - x_{j-1}}{k_{j-1,j}} + \frac{1}{h_3}\right)}$$

• Transfer equation $q_0 = U(T_a - T_b)$ or $Q_0 = U(WH)(T_a - T_b)$

The quantity *U*, called the "overall heat transfer coefficient,"

What controls the flux?

10.8 Forced and free convection

Comparison

 The flow patterns are	1. The flow patterns are
determined primarily by	determined by the buoyant
some external force	force on the heated fluid
2 First, the velocity profiles are found; then they are used to find the temperature profiles (usual procedure for fluids with constant physical properties)	 The velocity profiles and temperature profiles are interdependent
3. The Nusselt number depends	3. The Nusselt number depends
on the Reynolds and Prandtl	on the Grashof and Prandtl
numbers (see Chapter 14)	numbers (see Chapter 14)

Forced Convection

- Laminar flow in a circular
 - tube of radius R
- Constant physical properties
- Inlet temperature T₁
- Constant radial heat flux, q₀

"Transport Phenomena" 2nd ed., R.B. Bird, W.E. Stewart, E.N. Lightfoot

Shell balance

• Energy in at r and energy out in r+ Δ r and energy in at z and energy out in z+ Δ z

 $e_{r}|_{r} \cdot 2\pi r \Delta z = (2\pi r e_{r})|_{r} \Delta z \qquad e_{z}|_{z} \cdot 2\pi r \Delta r$ $e_{r}|_{r+\Delta r} \cdot 2\pi (r+\Delta r) \Delta z = (2\pi r e_{r})|_{r+\Delta r} \Delta z \qquad e_{z}|_{z+\Delta z} \cdot 2\pi r \Delta r$

- Work done on fluid by gravity $\rho v_z g_z \cdot 2\pi r \Delta r \Delta z$
- Adding these terms $\frac{(re_r)|_r (re_r)|_{r+\Delta r}}{\Delta r} + r \frac{e_z|_z e_z|_{z+\Delta z}}{\Delta z} + \rho v_z g_z r = 0$
- Taking limit as Δr and Δz go to zero $-\frac{1}{r}\frac{\partial}{\partial r}(re_r) - \frac{\partial e_z}{\partial z} + \rho v_z g = 0$

Differential equations

$$\begin{aligned} e_r &= \tau_{rz} v_z + q_r = -\left(\mu \frac{\partial v_z}{\partial r}\right) v_z - k \frac{\partial T}{\partial r} \\ e_z &= (\frac{1}{2}\rho v_z^2) v_z + \rho \hat{H} v_z + \tau_{zz} v_z + q_z \\ &= (\frac{1}{2}\rho v_z^2) v_z + (p - p^\circ) v_z + \rho \hat{C}_p (T - T^\circ) v_z - \left(2\mu \frac{\partial v_z}{\partial z}\right) v_z - k \frac{\partial T}{\partial z} \end{aligned}$$

Substituting the differential equation

$$\rho \hat{C}_{p} v_{z} \frac{\partial T}{\partial z} = k \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^{2} T}{\partial z^{2}} \right] + \mu \left(\frac{\partial v_{z}}{\partial r} \right)^{2} + v_{z} \left[-\frac{\partial p}{\partial z} + \mu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_{z}}{\partial r} \right) + \rho g \right]$$

Viscous heating The e (neglected) For th

The equation of motion For the Poiseuille flow

Differential equation

$$\rho \hat{C}_p v_{z,\max} \left[1 - \left(\frac{r}{R}\right)^2 \right] \frac{\partial T}{\partial z} = k \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) \right]$$

• BCs at
$$r = 0$$
, $T = \text{finite}$
at $r = R$, $k \frac{\partial T}{\partial r} = q_0 \text{ (constant)}$
at $z = 0$, $T = T_1$

Dimensionless equation

Dimensionless variables

$$\Theta = \frac{T - T_1}{q_0 R/k} \qquad \xi = \frac{r}{R} \qquad \zeta = \frac{z}{\rho \hat{C}_p v_{z,\max} R^2/k}$$

Equation and boundary conditions

$$(1 - \xi^2) \frac{\partial \Theta}{\partial \zeta} = \frac{1}{\xi} \frac{\partial}{\partial \xi} \left(\xi \frac{\partial \Theta}{\partial \xi} \right) \qquad \text{at } \xi = 0, \qquad \Theta = \text{finite}$$
$$(1 - \xi^2) \frac{\partial \Theta}{\partial \zeta} = \frac{1}{\xi} \frac{\partial}{\partial \xi} \left(\xi \frac{\partial \Theta}{\partial \xi} \right) \qquad \text{at } \xi = 1, \qquad \frac{\partial \Theta}{\partial \xi} = 1$$
$$\text{at } \zeta = 0 \qquad \Theta = 0$$

- Asymptotic solution for large ζ
 - It is expect a linear rise of the fluid temperature in ζ
 - Constant temperature profile for large ζ

$$\Theta(\xi,\zeta) = C_0\zeta + \Psi(\xi)$$

Temperature profile for large ζ

Boundary conditions

• Boundary condition 3 has to be changed. New

condition comes from the energy balance

$$2\pi R z q_0 = \int_0^{2\pi} \int_0^R \rho \hat{C}_p (T - T_1) v_z r \, dr \, d\theta \quad \longleftrightarrow \quad \zeta = \int_0^1 \Theta(\xi, \zeta) (1 - \xi^2) \xi \, d\xi$$

Solution

• Then, the differential equation for temperature profile

$$\frac{1}{\xi}\frac{d}{d\xi}\left(\xi\frac{d\Psi}{d\xi}\right) = C_0(1-\xi^2)$$

• Integrating twice

$$\Theta(\xi,\zeta) = C_0\zeta + C_0\left(\frac{\xi^2}{4} - \frac{\xi^4}{16}\right) + C_1 \ln \xi + C_2$$

Solution

 The integration constant are determined using the boundary conditions

$$\Theta(\xi,\zeta) = 4\zeta + \xi^2 - \frac{1}{4}\xi^4 - \frac{7}{24}$$

Arithmetic average
temperature
$$\langle T \rangle = \frac{\int_{0}^{2\pi} \int_{0}^{R} T(r, z)r \, dr \, d\theta}{\int_{0}^{2\pi} \int_{0}^{R} r \, dr \, d\theta} = T_{1} + (4\zeta + \frac{\tau}{24}) \frac{q_{0}R}{k}$$
Bulk temperature
$$T_{b} = \frac{\langle v_{z}T \rangle}{\langle v_{z} \rangle} = \frac{\int_{0}^{2\pi} \int_{0}^{R} v_{z}(r)T(r, z)r \, dr \, d\theta}{\int_{0}^{2\pi} \int_{0}^{R} v_{z}(r)r(r, z)r \, dr \, d\theta} = T_{1} + (4\zeta) \frac{q_{0}R}{k}$$

 $\int_{0} \int_{0} v_{z}(r) r \, dr \, d\theta$