Chapter 10. Shell energy balances and temperature
distributions in solids and laminar flow

Shell energy balances, boundary conditions

Heat conduction with a electrical heat source, a nuclear
heat source, a viscous heat source, and a chemical heat

source

Heat conduction through composite walls

Heat conduction in a cooling fin

Forced and free convection




10.1 Shell energy balance
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Boundary conditions

 Specified temperature at the surface
* Given heat flux normal to a surface

e At interfaces:

e Continuity of temperature

e Continuity of heat flux normal to the interface

* At solid-fluid interface: qg=hT,— T,
* To, solid surface temperature

* Tb, bulk fluid temperature




10.3 Heat conduction with a nuclear heat

source
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Shell balance for the nuclear fuel

e Rate of heat by conduction

* Inatr B o 4gy? = MTTF‘EE?EFJ)L-

qr

* outatr+Ar g, v ar - Am(r + A = @Garigt ).,

e Rate of thermal energy produced by nuclear fission

S, - 4mr’ Ar




Differential equations

* Introducing these terms into the shell balance
for the nuclear fuel and dividing by 4ntAr

d B ro\?
a {FEQf‘FJ) o S””|:’I + b(ﬁ) ]FE

* For the cladding

d 2N _
dr(rq,.) 0




* Integrating both equations

oo (r, b A, G
* For the nuclear fuel 7 = 5”'3'(5 " R2 E) T3
* For the cladding CO
C) —
9 =T
* Boundary conditions
B.C.1: atr =0, ¢\ is notinfinite
BC. 7 aty = RP q{F} — 4O
B.C. 3: atr = R\, T = 7O

B.C. 4: atr = R'©, T =T,



Solving the equations

e UsingBCs1and?2
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e Substituting the
Fourier’s law and
integrating
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Results

e Using BCs3and 4

S R{FJE 2 3 4
(Fy _ “'n0 . ¥ I . r
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10.4 Heat conduction with a viscous heat

source

Outer cylinder moves with

angular velocity Q

Inner cylinder |
is stationary L) [ o
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Friction in the fluid
produces heat
Mechanical energy
degraded to
thermal energy
Fluid temperature T
only a function the

of radius




Our system for small b

Top surface moves with velocity v, = RQ
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Momentum and temperature balances

 Combined energy flux vector

e = (pt? + pHV + [t -v] + q

 Velocity distribution

v, = v,(x/b), where v, = (IR




Momentum and temperature balances

* Energy balance over a shell with dimensions Ax, W, and L

merlx o folrhi‘.r =0

1 .
e, = (Epvz +pH>-vx +

Txx " Ux T Txy " Vy T Tyz " Uz + Qy




Differential Equations

* Dividing by Ax WL and taking limit Ax -0

* Integrating, no possible to evaluate C,

* Introducing e . Convective transport is zero (v, = 0)

Ex = Tyz * Uy T (qyx




Differential Equations

* Work by molecular mechanisms, v, only velocity no zero
and heat transport by molecular mechanism

dT
T,.. = —uldv,/dx) _kE
 Energy balance
dT dv, _

* Introducingv,.
* Second term: rate viscous heat production per unit volume




Differential Equations

* |ntegrating
_ _[B) )2 _S
T = (k)(b) 7 kI"’CE

atx =0, T=T,
atx = b, T=T,

T'—To\ 1, x(, «x X
(n—TU)'zBTb(] b)ﬂﬂ

e Using the BCs:

for T, # T,




Temperature distribution

* Brinkman number

Br = ,ILE?E/;{(T{; — TD}

By viscous dissipation

Heat transport by molecular mechanisms




Temperature distribution

I,=T,

the maximum temperature is at x/b = 3

# temperature dependence of the viscosity




10.6 Heat conduction through composite walls
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Results

e Heat flux T —T,

* Transfer equation go=UT,—T,) or Q,=UWHXT,— T,

The quantity U, called the “overall heat transfer coefficient,”

e What controls the flux?



10.8 Forced and free convection

Forced Convection
Heat Transfer
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Comparison

1. The flow patterns are 1. The flow patterns are
determined primarily by determined by the buoyant
some external force force on the heated fluid

2 First, the velocity profiles are 2. The velocity profiles and

found; then they are used to temperature profiles are
find the temperature profiles interdependent

(usual procedure for fluids

with constant physical

properties)

3. The Nusselt number depends | 3. The Nusselt number depends
on the Reynolds and Prandtl on the Grashof and Prandtl
numbers (see Chapter 14) numbers (see Chapter 14)
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Forced Convection

>

Fluid inlet
temperature T,
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_,_,/ "Transport Phenomena" 2nd ed,

R.B. Bird, W.E. Stewart, E.N. Lightfoot




Shell balance

* Energy in at r and energy out in r+ Ar and

energy in at z and energy out in z+ Az
e |+ 2mrAz = (27re)|, Az e,|, + 2mrAr
e .a * 2m(r + Ar)Az = 2are)|,4a, Az €:|:+$: - DarrAr

* Work done on fluid by gravity
pU.g. * 2mrArAz
e Adding these terms

(Fer)‘r - (rfr)lﬂﬂr Ezl‘- — & I'+.—.’Lz
+ - — =
.ﬁ?’ F Az + szgzr 0

e Taking limit as Ar and Az go to zero

10 Jde, _
e (re.) - + pv,.g =0




Differential equations

Jdu
EJ' = Trz?"": + ':!'r = _(Iu' L&_;)U: o k %_I

EE = (;pvg)vl + PHEJ: + TEEHE + q:

~ Jd0,
= Gpvd), + (p — P, + pC(T — T, — (2,0: Ez—)ﬂg — k %i:

Substituting the differential equation

~ 9T _ {10 (_aT\ , T Jv ap :
p"’wz—k[m(’“a?)*&;]*# . ”’z[ oz M m)*ﬂg]

Viscous heating The equation of motion
(neglected) For the Poiseuille flow




Differential equation

: (rV|er_ 16 (, T
(-l

atr =10, T = finite
e BCs atr = R, k i—: = gy (constant)
atz =0, T=T,




Dimensionless equation

e Dimensionless variables
I—T, r Z
@ — - g o ~
qoR/k R PC,0 maxR*/ K

* Equation and boundary conditions
at& =0, & = finite
140 J0
(1— y—;——( ) — 90 _
at{ =0, & =0

* Asymptotic solution for large ¢
* |tis expect a linear rise of the fluid temperature in

* Constant temperature profile for large ¢

B, ) = Cyd + V(&)




Temperature profile for large ¢
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Boundary conditions

* Boundary condition 3 has to be changed. New

condition comes from the energy balance

2 R . 1 ,
2mRzq, = L J.D pC(T — T))v,r dr de “ L= J; G D — £)EdE
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Solution

* Then, the differential equation for temperature profile

£ (f ‘”’) Coll - &)

* Integrating twice

B¢, 0 =Cil + Cﬂ(i i) +Ciln £+ G




Solution

* The integration constant are determined using the

boundary conditions
O D=4+ -3¢ —5

2 R
f T(r, z)r dr do
Arithmetic average  (T) = =20

temperature 2m R
P f f rdr dé
)] 0

R
=T-l+<4§+g—i)q”7

27w R
Bulk temperature j f v.(r)T(r, 2)r dr dO
- (EET:} — ] i i

atz
b 2% (R
(©:) f f 0.(")r dr d6
)] (]

R
=T, + (4@%?



