Chapter 11. The equations of change
for non-isothermal system

* The energy equation
* Special form of the energy equation

* The Boussinesq equation of motion for forced and free

convection
* Use of equation of change to solve steady state problems

* Dimensionless analysis of the equations of change for non-

isothermal systems
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Equations
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e Vector form
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Equations in vector form
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rate of increase of rate of energy addition  rate of energy addition
energy per unit per unit volume by per unit volume by
volume convective transport heat conduction

-Vepy) =NVelrevD) +plveg)

rate of work rate of work done rate of work done

done on fluid per on fluid per unit on fluid per unit

unit volume by  volume by viscous  volume by external
pressure forces  forces forces



Special form of the energy equation

e Subtract the mechanical energy equation in eq. 3.3-1
from the previous equation

Spll= —(V-pliv) —(V-q)
rate of net rate of rate of internal
increasein  addition of energy addition
internal internal energy by heat conduction,
energy by convective per unit
per unit transport, volume
volume per unit volume
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per unit volume  volume by
by compression  viscous dissipation




3.3. The equation of mechanical energy

* Dot product between velocity and equation of motion:
o (1 1
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Special form of the energy equation

* Using the substantial derivative with continuity
equation
DU

ST ~(V-q) —pV-v) — (v:Vv)

In function of enthalpy with continuity equation and U =
H-pV=H-()
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e Equation of change for temperature (with eq. 9.8-7)
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Special cases

* |deal gases @inp/dInT), = -

* For fluid flowing in a
constant pressure
system or a fluid
with constant
density

* For a stationary solid,
Vis zero

pC
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The Boussinesq equation of motion for
forced and free convection

* Boussinesq approach (simplified equation of state)
p(T) =p — pB(T = T)

Bis —(1/p)dp/aT), evaluated at T = T.

* Introducing only into pg (not p(Dv/Dt) in Eq B, Table 3.5-1.
Boussinesq equation

p%z (—=Vp + pg) — [V - 7] — pgBT — T)



Free Convection Heat transfer from a vertical

plate
(T-Ty) * Ambient temperature,
Tl
g I T
1-'1 * Fluid rises because of
e v, ()
J: the buoyant force
HE T RR: .
g * Constant fluid
”§ /{T;m physical properties,
N \hﬁ\mﬁ\ except for density
p=p(T)
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Equations

« Equation of continuity y 00, 0

 Equation of motion. Boussinesq approach
olo, L +0. 9 =4 L), + pgB(T — T))
],r[?y z Jz z ﬂyz {I.?'EE z 1
* Equation of energy

_n J A P I e il PR
pcp(ay 3 + v, E)(T T, = k(ﬂyz + &zz){r T))

p and E are evaluated at the ambient temperature T;.




Equations

* Boundary conditions

BC.1: aty=0, w9,=v,=0 and T=T,
B.C.2: asy— £, v.—=0 and T—T,
B.C.3: atz=0, v, =0



Dimensionless variables

 Dimensionless temperature 0= r-n
Tﬂ - Tl
* Dimensionless vertical coordinate = %
1/4
* Dimensionless horizontal coordinate n = (—B—) y
Ly
. . . . moo 2
* Dimensionless vertical velocity b, = (—) v,
' aBH
. . . . MH 1/4
* Dimensionless horizontal velocity b, = (TB v,
' o

o = k/pC,and B = pgB(T, — T)).




New Equations

* Equation of continuity Iy N d,
am d{
* Equation of motion. Boussinesq approach

g\, o,
('i)y f}ﬂ qbz ﬂ_§)¢z o ri".qg + 0

=0

* Equation of energy

‘0
i z 0=
("" an * 9 a«:) pu

B.C.1: atn =0, ¢, =¢.=0, B=1
B.C.2: asn— %, ¢, — 0, ® -0

BC 3: at ‘j = ﬂ; (ﬁz =0

* Boundary conditions



Equations

* The average heat u
flux from one side 4., = % ﬂ (—k —)
of the plate may
be written as

B B i 1/4 ) J‘l _@
* Using the Favg = KT Tl}(mH) 0 ( an)

dimensionless g\
— k(Tﬂ - T|}(—) - C
Lo

variables H
C 520 B(T . — 3\ \1/4
k s\ pgB(Ty — TOH
* Average heat flux =C g To- T])(( e )( 2
is proportional to r |
5 =C- H—{Tﬂ - T(GrPr)'/?
T4

Ra = GrPr is referred to as the Rayleigh number.



Dimensional analysis of the equations of
change for nonisothermal systems

* Continuity
V-w)=0

* Equation of motion

5%: ~VP + uVv + pgBT — T)

* Equation of energy

. DT
pC, 7y = kV'T + @,




Introducing dimensionless numbers

. .Y .z - Upt
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Forced convection
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Dimensionless groups
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Table 11.5-1 Dimensionless Groups in Equations 11.5-7, 8, and 9

Special Forced Free Free
cases — convection Intermediate convection convection
(A) (B)
Choice
f{)l‘ UU — 'U,D UU yfrl'ﬂ ﬂffﬂ
L 1 1
|LUUUE]I Re Re ! Pr
1.8(T, — T,
ﬂg_ B 12 D)]] Neglect Gl; Gr GrPr?
UD R'E"_
k 1 1 1 1
l, Uﬂﬁép RePr RePr Pr
UG Br Br
- Neglect Neglect
|l l,pC.(T, — Tu)]l RePr RePr &




Dimensionless groups

ble 11.5-3 Physical Interpretation of Dimensionless Groups

ﬂf’n/ Iy _inertial force
wo,/I2 viscous force

Table 11.5-2 Dimensionless Groups Used in R
Nonisothermal Systems €=

Re = [ljvge/ p] = [lgvo/ vl = Reynolds number

Pr = [[Cp,uf’ kKl =v/a] = Prandtl number pl‘?% / fﬂ inertial force
Gr = [¢B(T, — TPl;/v’] = Grashof number Fr = g = ity f
Br = [wod/k(T, — T)] = Brinkman number gravity torce
Pé = RePr = Péclet number .
Ra = GrPr = Rayleigh number Gr _ Pgﬁ(f1 o Tﬂ) _ bu?_}’a“t force
Ec = Br/Pr = Eckert number R E.'?l Pt’é f ID inertial force
P& — ReP ﬂC (T, — Ty)/ fn heat transport by convection
¢ = RePr = :
k(T, — T/} " heat transport by conduction
"Trang,port Phenomena" 2nd_ ed.,
RB. Bird, W.E. Stewart, EN. Lightfoot wl(wp/ 1y)* heat production by viscous dissipation

- k(T, — T)/I2 B heat transport by conduction




