
When a system contains two or more components whose 

concentrations vary  from point to point, there is natural

tendency for mass to be transferred, minimizing  the 

concentration differences within the system.

Mechanisms of mass transfer

Molecular Transfer

Convective Transfer

Mass transfer

~ random molecular motion in quiescent fluid

Molecular transfer

Convective transfer

~ transferred from surface into a moving fluid

Analogy between heat and mass transfer

Heat transfer

Heat conduction

Heat convection

Fundamentals of Mass Transfer
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Mass Concentration

the mass of A per unit volume of mixture
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Molar Concentration

~ the number of moles of A present per unit volume 

of mixture

( )ACb) molar concentration

=
i

iCC- Total molar concentration

A

A
A

M
C


=

For ideal gas

 =
i

ix 1
C

C
x A

A =

- molecular weight of A
AM

RTnVP AA =

RT

P

V

n
C AA

A == - partial pressure of A
AP

- Mole fraction

for ideal gas mixture

for gasfor liquid

for ideal gas
RT

P

V

n
C total ==

C

C
y A

A =  =
i

iy 1

P

P

RTP

RTP

C

C
y AAA

A === Dalton’s law of gas mixture



Mass Average and Molar Average Velocity

a) mass average velocity
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relative to stationary coordinate axes
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c) diffusion velocity - the velocity of a particular species relative to the mass

average or molar average velocity

vvi − and Vvi −

A species can have a diffusion velocity 

only if gradients in the concentration existvvB −
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Mass Diffusivity
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Gases                         5x10-6 ~ 10-5 m2/s

Liquids                          10-10 ~ 10-9

Solids                            10-14 ~ 10-10



Molecular Mass and Molar Fluxes

ABD

( ) AABAAA xCVvCJ −=−= D

AJ

Molar flux

Mass flux

mass diffusivity(diffusion coefficient) for component A 

diffusing through component B

the molar flux relative to the molar average velocity
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Convective Mass and Molar Fluxes

Molar flux

Mass flux relative to a fixed spatial coordinate system
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Related Types of Molecular Mass Transfer

Nernst-Einstein Relation

Au Mobility of component A, or the resultant velocity of 

the molecule under a unit driving force

According to 2nd law of thermodynamics, system not equilibrium will tend 

to move toward equilibrium with time

Driving force = chemical potential

c
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Mass Transfer by Other Physical Conditions

Thermal diffusion(Soret diffusion)

~ produce a chemical potential gradient

Mass transfer by applying a temperature gradient to a multicomponent system

Small relative to other diffusion effects in the separation of isotopes

Pressure diffusion

Mass fluxes being induced in a mixture subjected to an external force field

Separation by sedimentation under gravity

Electrolytic precipitation due to an electrostatic force field

Magnetic separation of mineral mixtures by magnetic force

Component separation in a liquid mixtures by centrifugal force

Knudsen diffusion

If the density of the gas is low, or if the pores through which the gas 

traveling are quite small

the molecules will collide with the wall more frequently than each other

(wall collision effect increases)

the molecules are momentarily absorbed and than given off in the 

random directions

gas flux is reduced by the wall collisions









Differential Equations of Mass Transfer

Conservation of Mass(overall)
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Differential 

Equations of Mass 

Transfer-1

Equation of Continuity for the Mixture 

In binary mixture
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Differential 

Equations of Mass 

Transfer-2
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Differential 

Equations of Mass 

Transfer-3

in terms of molar unit
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Differential Equations 

of Mass Transfer-4
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Boundary Conditions

Initial Conditions 00 or        0 AAAA CC,tat ===

Case 1) The concentration of the surface may be specified

Boundary Conditions
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Case 2) The mass flux at the surface may be specified
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Case 3) The rate of heterogeneous chemical reaction may be specified

Case 4) The species may be lost from the phase of interest by convective mass 

transfer
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Steady State Diffusion of A through Stagnant B
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At z=z1, gas B is insoluble in liquid A
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Steady State 

Diffusion of A 

through Stagnant B-1
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Film Theory

~ a model in which the entire resistance to diffusion from the liquid surface 

to the main gas stream is assumed to occur in a stagnant or laminar film of 

constant thickness d. 
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Concentration Profile
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Pseudo Steady State Diffusion through a 

Stagnant Gas Film
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the length of the diffusion path changes a small amount over a long 

period of time ~ pseudo steady state model

ln,B

AAAB

A

AAB
z,A

y

yy

zz

C

y

y
ln

zz

C
N 21

121

2

12 1

1 −

−
=

−

−

−
=

DD

Molar density of A in the liquid phase

ln,

21,

B

AAAB

A

LA

y

yy

z

C

dt

dz

M

−
=

 D

( ) 






 −

−


=

2

2

0

2

21

ln,, zz

yyC

My
t t

AAAB

ABLA

D

( ) 






 −

−


=

2

2

0

2

21

ln,, zz

tyyC

My
t

AA

ABLA

ABD

zAN ,

S

Flowing of gas B

0zz =

tzz =

Liquid A



Diffusion through a Isothermal Spherical Film
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Diffusion through a Nonisothermal Spherical Film
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Diffusion with Heterogeneous Chemical Reaction
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Diffusion with Slow Heterogeneous Chemical Reaction
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Diffusion with Homogeneous Chemical Reaction
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Diffusion with 

Homogeneous 

Chemical Reaction-1
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Gas Absorption with Chemical Reaction 

in an Agitated Tank

effect of chemical reaction rate on the 

rate of gas absorption in an agitated 

tank

Example) The absorption of SO2 or 

H2S in aqueous NaOH solutions

Semiquantative understanding can

be obtained by the analysis of a 

relatively simple model

Gas A in

Surface area 

of the bubble

is S

Volume of liquid  

phase is V

Liquid B



Gas Absorption with 

Chemical Reaction 

in an Agitated Tank-1

Assumptions:

1) Each gas bubble is surrounded by a stagnant liquid film of thickness d, which is 

small relative to the bubble diameter

2) A Quasi-steady state concentration profile quickly established in the liquid film 

after the bubble is formed

3) The gas A is only sparingly soluble gas in the liquid, so that we can neglect the 

convection term.

4) The liquid outside the stagnant film is at a concentration CAd, which changes so 

slowly with respect to time that it can be considered constant.

Z=0 Z=d

CAd

Liquid film

Liquid-gas

interface

Gas in 

bubble

Main body of liquid

Without reaction

With reaction



Gas Absorption with 

Chemical Reaction 

in an Agitated Tank-2
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The total rate of absorption with chemical reaction

ζsinhcosh 21 += CC

Assumption (d)



Gas Absorption with 

Chemical Reaction 

in an Agitated Tank-3

for large value of , dimensionless surface

mass flux  increases rapidly with  and 

becomes nearly independent of V/Sd.

for very slow reactions, 

the liquid is nearly 

saturated with dissolved gas

Chemical rxn is fast enough to keep 

the bulk of the solution almost solute 

free, but slow enough to have little 

effect on solute transport in the film

"Transport Phenomena" 2nd ed.,
R.B. Bird, W.E. Stewart, E.N. Lightfoot



Diffusion and Chemical Reaction inside a Porous 

Catalyst
We make no attempt to describe the diffusion inside the 

tortuous void passages in the pellet. Instead, we describe the 

“averaged diffusion” of the reactant ~ effective diffusivity
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"Transport Phenomena" 2nd ed.,
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Diffusion and Chemical 

Reaction inside a 

Porous Catalyst-1

First order chemical reaction, 

a is the available catalytic surface per unit volume
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Diffusion and Chemical 

Reaction inside a 

Porous Catalyst-2

If the catalytically active surface were all exposed to the stream, then the 

species A would not have to diffuse through the pores to a reaction site.

Rr

A
AR,AA

dr

dC
RNRW

=

−== D22 44














−= R

ak
cothR

ak
CRW

AA

ARAA
DD

D 1114

( )( )( )AR,AR CkRW 1
3

3
4

0 −= a

( )1
3
2

0

−


== coth
W

W

,AR

AR
A

Aak D1= Thiele modulus

Effective factor

For nonspherical catalyst particles

AARpAR CakVW  1














=

p

p

nonsph
S

V
R 3 ( )133

3

1
2

−


= cothA

( )ppA SVak D1= generalized 

modulus



Diffusion and Chemical 

Reaction inside a 

Porous Catalyst-3

"Transport Phenomena" 2nd ed.,
R.B. Bird, W.E. Stewart, E.N. Lightfoot



Diffusion in a Multi-Component System
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Transient 1-D Diffusion of a Finite Slab
~ negligible surface resistance
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Diffusion of a 
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Transient Diffusion in a Semi-Infinite Medium
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Unsteady State Evaporation of a Liquid
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Unsteady State 

Evaporation of a 

Liquid-1
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Gas Absorption with Rapid Reaction
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Gas Absorption with 

Rapid Reaction-1
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Gas Absorption 

with Rapid 

Reaction-2
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Gas Absorption with Rapid Reaction-2

"Transport Phenomena" 2nd ed.,
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Diffusion into a Falling Liquid Film(Gas Absorption)
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Diffusion into a 
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Rybczynski-Hadamard circulation

Gas absorption from rising bubbles

Gas bubbles rising  in liquids free surface –active 

agents undergo a toroidal circulation
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Diffusion into a Falling Liquid Film(Solid Dissolution)
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Diffusion, Convection and Chemical Reaction
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Analytical Expressions for Mass Transfer Coefficients

( )( ) AmcA
AB

A CAkCWL
L

v
W −


= 0

,0
max

0 0
4D

( ) 21
0

1281
44

ScRe.
LvLvLk

Sh
AB

max

AB

max

AB

m,c
m =


























=


==

DDD

Mass Transfer in Falling Film on Plane surfaces

The dissolution of a slightly soluble solid into a falling liquid film
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Analytical Expressions for 

Mass Transfer 

Coefficients-1
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Mass Transfer for Flow Around Spheres

Creeping flow around a solid sphere with slightly soluble coating 
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The gas absorption from a gas bubble surrounded by liquid in creeping flow
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Blasius’s Solution-1
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Mass, Energy and Momentum Transfer Analogy
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Reynolds Analogy (1) Sc=1,  and (2) no form drag ~ only skin drag
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Chilton-Colburn Analogy

The Schmidt number is other than unity

Chilton-Colburn Analogy (1) 0.6<Sc<2500,  and (2) laminar flow
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Mass Transfer to Non-Newtonian Fluids
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C(x,z) 

fully developed flow

incompressible power-law fluid,

mass transfer rate is small

no chemical reaction
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Mass Transfer to a Power-Law Fluid  

Flowing on an Inclined Plate

Mass Transfer to Non-Newtonian Fluids



The stress distribution in the film
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Mass Transfer to a Power-Law Fluid  
Flowing on an Inclined Plate-1
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the modified Bessel functions of the first kind 

of order -1/3 and 1/3, respectively

Mass Transfer to a Power-Law Fluid  
Flowing on an Inclined Plate-2



the average(over the length L) mass transfer coefficient

( )
( )

3
1

3
4

3
2

6
1

0

)3)(*( 











−−=



 −

= A

w

o

x
D

s
cc

x

c 

( )

3
1

3
1

3
1

0

3
)*( 










−−=





= zD
cc

x

c

A

w

o

x



( )

3
1

3
1

3
2

3
4

0

0

2

3

)*(

1










=

−




−

= 
=

L

D

cc

dz
x

c
D

L
k wAL

o

x

A

a



Mass Transfer to a Power-Law Fluid  
Flowing on an Inclined Plate-3
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completely analogous to convective heat transfer in Poiseuille flow
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Mass Transfer to Non-Newtonian Fluids



The velocity profile for power-law fluids
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Mass Transfer to a Power-Law Fluid in 
Poiseuille Flow-1



The local mass transfer coefficient

*)(
0

cck
y

c
D

bloc

y

A
−=




−

=

For short contact time, cbco
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local Sherwood number(Nusselt number for mass transfer)

Mass Transfer to a Power-Law Fluid in 
Poiseuille Flow-2



average Sherwood number
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Shear thinning(as n decreases) enhances the mass transfer rate

Mass Transfer to a Power-Law Fluid  in 
Poiseuille Flow-3



Concentration Distributions in Turbulent Flows
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Concentration 

Distributions in 

Turbulent Flows-1

Prandtl’s mixing length ~ normal to the direction of bulk flow
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Fig. 22.1-1. Example of mass transfer across a
plane boundary: 포화 평판의 건조

Fig. 22.1-2. Two rather typical kinds of 
membrane separators, classified here 
according to a Peclet number, or the flow 
through the membrane. The heavy line 
represents the membrane, and the arrows 
represent the flow along or through the 
membrane.

the rates of mass transfer across phase boundaries to the 

relevant concentration differences, mainly for binary systems

TRANSFER COEFFICIENTS IN ONE PHASE

진짜 상 경계를 가짐

선택적 투과막
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Fig. 22.1-3. Example of mass transfer 
through a porous wall: transpiration cooling.

Fig. 22.1-4. Example of a gas-liquid contacting
device: the wetted-wall column. Two chemical 
species A and B are moving from the downward-
flowing liquid stream into the upward-flowing gas
stream in a cylindrical tube

유체역학적 물성의 급격한 변화

"Transport Phenomena" 2nd ed.,
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if the heat of mixing is zero (as in ideal gas mixtures)

( )o

,pAA TTC
~

H −= 00 : reference temperature
oT



Partial molar enthalpy 






n,P,T
n

H
H 














=

( ) ( ) ,n,n,nkH,kn,kn,knH 321321 =

=


HnHBy Euler Theorem 

Enthalpy ~ Extensive property

Homogeneous of degree 1

nB

BA
x

H
~

xH
~

H

















−=

nB

AB
x

H
~

xH
~

H

















+= ( ) n/Hnn/HH

~
BA =+=

nB

B
A

nA x

H

n

x

n

H
H

n

H

B













−==












( ) nxn    ;nxn BBBA =−= 1

( ) ( )nHnH
x

n

n

H

x

n

n

H

x

H
BA

nB

B

nBnB

A

nAnB
AB

++−=























+
























=













( )BBAA HnHnHnH +== 






"apparent" mass transfer coefficient

The superscript 0 indicates that these quantities are applicable only for small mass-transfer
rates and small mole fractions of species A.

mass transfer coefficient



Interphase Mass Transfer
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Assuming equilibrium across the interface
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TRANSFER COEFFICIENTS IN TWO PHASES

평형곡선

Aey

Liquid phase composition in equilibrium with a gas at compositionAex

Abx
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Overall concentration difference
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Fig. 22.4-2. Relations among gas- and 

liquid phase compositions, and the  

graphical interpretations of mx, and my.

0
loc,yK the overall mass transfer coefficient "based on the gas phase’

( ) ( )AbAeloc,xAeAbloc,yA xxKyyKN −=−= 00
0

0
loc,xK the overall mass transfer coefficient "based on the liquid phase"
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If                                the mass-transport resistance of the gas phase has little effect,
and it is said that the mass transfer is liquid-phase controlled. In practice, this means that 
the system design should favor liquid-phase mass transfer.

If                                then the mass transfer is gas-phase controlled. In a practical
situation, this means that the system design should favor gas-phase mass transfer.

If                                           , roughly, one must be careful to consider the interactions
of the two phases in calculating the two-phase transfer coefficients. 

100 loc,yloc,x mkk

100 loc,yloc,x mkk

1010 00  loc,yloc,x mkk.



Mean two phase mass transfer coefficient

bulk concentrations in the two adjacent phase do not change significantly over 
the total mass transfer surface
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an oxygen stripper, in which 
oxygen(A)  from the water(B) 
diffuses into the nitrogen gas(C) 
bubbles.

Penetration model holds in each phase
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Only liquid phase resistance is significant

Absorption or desorption of sparingly soluble 
gases is almost always liquid phase controlled
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the law of conservation of mass of 
chemical species  in a multicomponent 
macroscopic flow system

the mass rate of 
addition of 
species  to the 
system by mass 
transfer across 
the bounding 
surface

the instantaneous 
total mass of  in 
the system

the net rate of 
production
of species  by 
homogeneous 
and hetero-
geneous 
reactions within 
the system

in molar units



Disposal of an unstable waste product
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Binary Splitters
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Gas-liquid Splitters(equilibrium distillation)  Relative volatility

Cut



Dirac 분리용량(separation capacity) 및 가치함수(value function)

서로 다른 분리공정의 유효성을 비교하기 위한 기준 수립
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Compartmental Analysis

021   0  ===t

A complex system is treated as a network of perfect mixers, each constant 
volume, connected by ducts of negligible volume, with no dispersion occurring 
in the connecting ducts

The volumetric flow rate of solvent flow from unit m to unit n
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For the recovery period
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For the recovery period

during dialysis period
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