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6.1 Optimality Condition Using Kuhn-
Tucker Necessary Condition
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Optimal Solution Using Optimality Condition
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1) Maximum value: The increase of the value of the continuous function f(x)

is changed to the decrease of that at x = x*.

2) Minimum value: The decrease of the value of the continuous function f(x)

is changed to the increase of that at x = x*.

*( ) 0f x 
(Necessary condition for x = x* to be a maximum or minimum)

“수학의 정석” (Mathematics II) Review“6. Maximum, Minimum and Differentials”(p.104)

Optimality Conditions for Function of Single Variable
- The Maximum and Minimum of the Function
Review of the Course of High School
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Optimality Conditions for Function of Single Variable
- First-Order Necessary and Sufficient Conditions (1/3)

 First-order necessary condition for the function of a single variable: f′(x*) = 0

Let x - x* = d, the equation is as follows.

* * * 21
( ) ( ) ( ) ( )

2
f x f x f x d f x d R    

Remainder

:  If the difference between

x and x* is small, the 

value of the remainder is

also very small. 

Rxx
dx

xfd
xx

dx

xdf
xfxf  2*

2

*2
*

*
* )(

)(

2

1
)(

)(
)()(

Proof) The Taylor series expansion of f(x) at the point x* is as follows.

* * 21
( ) ( ) ( )

2
f x f x d f x d R    

From this equation, the change in the function at x*, i.e., f(x) - f(x*) = f(x) is given as
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* * * 21
( ) ( ) ( ) ( ) ( )

2
f x f x f x f x d f x d R      

f(x*) is neither minimum nor 

maximum (inflection point).

f(x*) is minimum.

*x dx *dx * *x dx *dx * *x dx *dx *

f(x*) is maximum.

Optimality Conditions for Function of Single Variable
- First-Order Necessary and Sufficient Conditions (2/3)

f must be positive, if x* is a local minimum point.

Thus, the only way f can be positive regardless of the sign of d in the neighborhood of x*

is f′(x*) = 0.

In the same way, f must be negative if x* is a local maximum point. So, the only way f

can be negative regardless of the sign of d in a neighborhood of x* is f′(x*) = 0.

Since d (= x - x*) is small, the first-order term f′(x*)d dominates other terms.

And the sign of the term f′(x*)d is arbitrary.

x = x*x = x* x = x*
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Optimality Conditions for Function of Single Variable
- First-Order Necessary and Sufficient Conditions (3/3)

 Now, we need a sufficient condition to determine which of the stationary points are

actually minimum for the function.

Since stationary points satisfy the necessary condition f′(x*) = 0, the change in function

becomes as follows.Rdxfdxfxf  2** )(''
2

1
)(')(

* 21
( ) ( )

2
f x f x d R  

Since the second-order term dominates all other higher-order terms, the term can be

positive for all d  0, if                       

(Sufficient condition)
*( ) 0f x 

 First-order necessary condition

If x* is a local minimum point, f′(x*) = 0.

If f′(x*) = 0, x* is a stationary point 

(minimum, maximum, or inflection point).

 Sufficient condition

If x* is a stationary point (f′(x*) = 0) 

and f″(x*) > 0, x* is a local minimum point.

Summary

* * * 21
( ) ( ) ( ) ( ) ( )

2
f x f x f x f x d f x d R      
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 Matrix form of the Taylor series expansion for the function of two variables

    Rfff
TT  ******  )(

2

1
)( )()()( xxxHxxxxxxx

 22
*
2

*
1

*
21 ,),(,),(  Mxxxx TT Hxx

 Matrix form of the Taylor series expansion for the function of several variables

: It has the same form of the function of two variables.

nnM

f




H

xx ,, *
: n dimensional vector

Element of the 2x2 Matrix

Rfff TT  dxHddxxdx )(
2

1
)()()( ****

 By defining x - x* = d, the Taylor series expansion for the function of the several 

variables is as follows.

,0)( *  Tf x 0)(
2

1 * dxHdT Sufficient conditions for x = x*

to be a local minimum

Optimality Conditions for Function of Several Variables 



2017-06-17

7

13
Topics in Ship Design Automation, Fall 2016, Myung-Il Roh

1) the first-order necessary condition:

If f(x*) = 0, i.e.,                             , x* is a stationary point (minimum, 

maximum, or inflection point).

2) the sufficient condition:

If dTH(x*)d > 0, then the stationary point (f(x*)T = 0  f(x*) = 0) is a local 

minimum.

To be dTH(x*)d > 0, H(x*) must be positive definite.

 The Taylor series expansion of f(x), which is the function of n variables, gives

Rfff TT  dxHddxxx )(
2

1
)()()( ***

[Summary] Optimality Conditions for Function of
Several Variables

 If we assume a local minimum is at x*, then f must be positive.

),2,1(,0
)( *

ni
x

f

i




 x

Rff TT  dxHddx )(
2

1
)( **

 From this equation, the change in the function at x*, i.e., f(x) = f(x) – f(x*), is given as
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Lagrange Multiplier for Equality Constraints
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Slope =

f

2x
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Slope =

)  ,( 21 dxdx

Necessary Condition for a Stationary Point: Total Derivative
df = 0  grad f = 0

2 2 2
2 2

1 2 1 1 2 22 2
1 2 1 1 2 2

1
2

2

f f f f f
f x x x x x x R

x x x x x x

     
                   

The change in the function f(x1, x2) can be expressed 
using Taylor expansion as follows

If                       , the first-order term

dominates other terms. 
1 20, 0x x    1 2

1 2

f f
x x

x x

 
  

 

Therefore, f can be approximated as                        .1 2
1 2

f f
f x x

x x

 
    

 

1 2
1 2

f f
df dx dx

x x

 
 
 

The change of the function
in x1 direction

The change of the 
function in x2 direction

The symbol ”d” refers to the infinitesimal 
change. By definition of “d”, we can write
the change in function f as follows:

If df = 0, then x* is a stationary point.

1 2

0
f f

x x

 
 

 
0f 

It means that the gradient of function f

must be equal to zero.

To be df = 0 regardless of the sign of dx1

and dx2, f/x1 and f/x2 must be zero.
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Definition of Stationary Point

Given: Minimize f(x1, x2)

* *
1 2( , )x x

* *
1 2( , )f x x

The change in function (df ) at the point (x1
*, 

x2
*) with the change in variables (dx1, dx2) is 

as follows.
Find: Stationary point (x1*, x2*)

The point at which the change in function 
(df ) is zero is called stationary point. 
It includes the minimum, maximum, and 

inflection (saddle) point.

1 2( , )f x x

1x

2x

Note: In the general engineering optimization 
problem, the optimum point (x) is more important 
than the optimum value (f ).

[Example] Principal dimensions of a ship (L, B, D, CB)
to minimize the shipbuilding cost is more 
important than the shipbuilding cost itself.

1 2
1 2

f f
df dx dx

x x

 
 
 



2017-06-17

9

17
Topics in Ship Design Automation, Fall 2016, Myung-Il Roh

1 2 3
1 2 3

f f f
df dx dx dx

x x x

  
  
  

At the stationary point, the change in the function (df ) is zero. 

The gradient of the function at the stationary point must be zero, because the 

change in the function (df ) can be only zero regardless of the sign of dx1, dx2, and dx3.

1 2 3

0
f f f

x x x

  
  

  

0f 

Given: 1 2 3( , , )Minimize f x x x

Find: Stationary point (x1
*, x2

*, x3
*)

Stationary Point for Unconstrained Optimization Problem

Because ‘Minimize f’ is formulated as an 
equation (df =0), the number of equations is 
equal to the number of unknown variables.
(Determinate problem)
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1. Express h (equality constraint) as an explicit function
of x1.

2. Substitute x1 into f and find the stationary point by 
using df = 0.

In many problem, it may not be possible to 
express h (equality constraint) as an explicit 
function of x1.

Is there any method to obtain the 
stationary point if the equality 
constraint can not be expressed as an 
explicit function?

df = 0 at the stationary point. Since h(x1,x2,x3) = 0, dh is also zero.

Since equation ① and ② are equal to zero, the following equation is always satisfied.

0df dh  

1 2 3
1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

① 1 2 3
1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

②

3
1 2 3 1 2) ( , , ) tan cos 0xex h x x x x x e   

Example) It is difficult to express the following equality 
constraint as an explicit function.

 is an undetermined coefficient ‘Lagrange multiplier’.

Stationary Point for Constrained Optimization Problem (1/3)

Method:

Solution)

, where

Given:
1 2 3( , , )Minimize f x x x

Find: Stationary point (x1
*, x2

*, x3
*)

1 2 3  ( , , ) 0Subject to h x x x 



2017-06-17

10

19
Topics in Ship Design Automation, Fall 2016, Myung-Il Roh

1 2 3
1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

1 2 3
1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

This equation can be rearranged as follows.

1 2 3 1 2 3
1 2 3 1 2 3

0
f f f h h h

dx dx dx dx dx dx
x x x x x x


      

            

1 2 3
1 1 2 2 3 3

0
f h f h f h

dx dx dx
x x x x x x

  
         

                   

Because of the equality constraint h, 
dx1, dx2, and dx3 are not independent.

①

②

0df dh   : Undetermined Coefficient ‘Lagrange multiplier’

Stationary Point for Constrained Optimization Problem (2/3)

Given:
1 2 3( , , )Minimize f x x x

Find: Stationary point (x1
*, x2

*, x3
*)

1 2 3  ( , , ) 0Subject to h x x x 
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1 2 3
1 1 2 2 3 3

0
f h f h f h

dx dx dx
x x x x x x

  
         

                   
If the dx1, dx2, and dx3 were all independent of each other, all terms in the brackets should be zero to 
satisfy the equation. This however, is not the case because of the equality constraint h. Let’s try to 
make the first term to be zero by determining a proper value of λ, so that the following equation is 
satisfied without considering the dx1.

2 3
2 2 3 3

0
f h f h

dx dx
x x x x

 
     

           
Since dx2 and dx3 are independent, the terms in the brackets must be zero to satisfy the equation.

1 1 2 2 3 3

0, 0, 0
f h f h f h

x x x x x x
  

         
                    
Therefore, the point (x1, x2, x3, ) that satisfies the following equations is a stationary point.

4 Unknown variables: (x1, x2, x3, λ)

4 Equations

There exists an unique solution.

1 2 3
1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

1 2 3
1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

Because of the equality constraint h, 
dx1, dx2, and dx3 are not independent.

①

②

0df dh  
: Undetermined Coefficient 

‘Lagrange multiplier’

Stationary Point for
Constrained Optimization Problem (3/3)

1 1 2 2

1 2 3
3 3

0, 0

0, ( , , ) 0

f h f h

x x x x

f h
h x x x

x x

 



   
   

   
 

  
 

Given:
1 2 3( , , )Minimize f x x x

Find: Stationary point (x1
*, x2

*, x3
*)

1 2 3  ( , , ) 0Subject to h x x x 
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1 1 2 2

1 2 3
3 3

0, 0

0, ( , , ) 0

f h f h

x x x x

f h
h x x x

x x

 



   
   

   
 

  
 

1 2 3 1 2 3 1 2 3( , , , ) ( , , ) ( , , )L x x x f x x x h x x x  

It is convenient to write these equations in terms of a Lagrange function, L, defined as 

1 2 3( , , , ) 0L x x x  
Constrained optimization problem is transformed to an unconstrained
optimization problem.

1 1 1

0
L f h

x x x
  

  
  

λ: Lagrange Multiplier
L: Lagrange Function1 2 3( , , ) 0

L
h x x x




 


2 2 2

0
L f h

x x x
  

  
  

3 3 3

0
L f h

x x x
  

  
  

Lagrange Multiplier for Equality Constraints

The point (x1, x2, x3, ) that satisfies the 
following equations is a stationary point.
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Necessary condition that minimize f is df = 0. 
df = 0 corresponds to Eq. ①’ as follows.

Optimization Problem

Minimize

Subject to

①

②

③
1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 

1 2 3( , , )f x x x Number of variables: 3

Number of equation: 2

Because ‘Minimize f’  is 
formulated as an equation
(df = 0), the number of equations 
is equal to the number of 
unknown variables.
(Determinate problem)

[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (1/5)

1 2 3
1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

①’

1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 
②
③

Subject to

Number of variables: 3
Number of equations: 3

 We can solve this.
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Optimization Problem

1 2 3
1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

①’

②’

③’

1 1 1
1 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

2 2 2
2 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (2/5)

To find the relationships among dx1, dx2, dx3, 
we modify the equation ② and ③ to the form 
of total derivative dh1 and dh2.

1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 
②
③

Subject to

1 2 3
1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

①’

Necessary condition that minimize f is df = 0. 
df = 0 corresponds to Eq. ①’ as follows.

Minimize

Subject to

①

②

③
1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 

1 2 3( , , )f x x x Number of variables: 3

Number of equation: 2
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Are the equation ①’, ②’ ,  and ③’  differential equations with respect to f, h1, and h2?

Optimization Problem
1 2 3

1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

①’

②’

③’

1 1 1
1 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

2 2 2
2 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

However, the function f, h1, and h2 (equation ①, ②, ③) are given and differential quantities of dx1, dx2, 
and dx3 are to find, the equation ①’, ②’, and ③’ are algebraic equations for the variables x1, x2, and x3.

[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (3/5)

1 2 3
1 2 3

0,
f f f

dx dx dx
x x x

  
  

  
1 1 1

1 2 3
1 2 3

0,
h h h

dx dx dx
x x x

  
  

  
2 2 2

1 2 3
1 2 3

0,
h h h

dx dx dx
x x x

  
  

  

Answer: If the problem were given as follows: 

- Given:                                                                                            

- Find: Function f, h1, h2

Then the equation ①’, ②’, and ③’ would be differential equations.

Minimize

Subject to

①

②

③
1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 

1 2 3( , , )f x x x
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1 1 2 2 0df dh dh   

 Since dx3 is an 
independent variable

1 2
1 2 1

1 1 1

h hf
dx

x x x
 

  
     

1 2
1 2 2

2 2 2

h hf
dx

x x x
 

  
      

1 2
1 2 3

3 3 3

0
h hf

dx
x x x

 
  

       

We multiply the equation ②’ and ③’ by 1 and 2, respectively
and add it to the equation ①’:

1 2 3
1 2 3

* 0
f f f

df dx dx dx
x x x

  
   
   ①’

②’

③’

1 1 1
1 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

2 2 2
2 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

5 variables: (x1, x2, x3, λ1 , λ2)

5 equations: 2,3,4,5,6

There exists a 
unique solution.

[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (4/5)

 Determine 1, 2 so that 
the first term in the brackets 
becomes zero*.
(to eliminate dx1)

 Determine 1, 2 so that  
the second term in the brackets 
becomes zero*.
(to eliminate dx2)

= 0    ④ = 0     ⑤ = 0     ⑥

* Since dx1, dx2, and dx3 are not independent
because of the equality constraints h1 and h2.

Optimization Problem

Minimize

Subject to

①

②

③
1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 

1 2 3( , , )f x x x
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p g p
We formulate differently: Constrained optimal design problem becomes 
unconstrained optimal design problem.1 2 3 1 2 1 2 3 1 1 1 2 3 2 2 1 2 3( , , , , ) ( , , ) ( , , ) ( , , )L x x x f x x x h x x x h x x x     

1 2 3 1 2( , , , , ) 0L x x x   

1 2
1 2

1 1 1 1

0
h hL f

x x x x
   

   
   

λ: Lagrange Multiplier
L: Lagrange Function

1 1 2 3
1

( , , ) 0
L

h x x x



 


1 2
1 2

2 2 2 2

0
h hL f

x x x x
   

   
   

1 2
1 2

3 3 3 3

0
h hL f

x x x x
   

   
   

2 1 2 3
2

( , , ) 0
L

h x x x



 


②

③

④

⑥

⑤

1 2 1 2
1 2 1 2

1 1 1 2 2 2

1 2
1 2 1 1 2 3 2 1 2 3

3 3 3

0, 0

0, ( , , ) 0, ( , , ) 0

h h h hf f

x x x x x x

h hf
h x x x h x x x

x x x

   

 

    
     

     
 

    
  

The point (x1, x2, x3, 1, 2) that satisfies the following 
equations is a stationary point.

It is convenient to write these equations in terms of a Lagrange function, L, defined as 

The Lagrange function gives us a simple way of formulating the equations 
that have to be satisfied at a stationary point.

[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (5/5)
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2 2
1 2 1 2( , ) ( 1.5) ( 1.5)f x x x x   

1 2 1 2( , ) 2 0h x x x x   

Original Problem

75.0f

5.0f

1 2

1

2

1 2( , ) 0h x x 

C

Minimize

Subject to

1 2 1 2 1 2

2 2
1 2

1 2

( , , ) ( , ) ( , )

( 1.5) ( 1.5)

( 2)

L x x f x x h x x

x x

x x

 



 

   
  

Lagrange Function

Minimize

1x

2x

0.0)(,5.0)(  CC hf

Necessary Condition: 

* * *
1 2 1, 1x x     (The point C is the stationary 

point.)

1 2( , ) 0L x ,x  

1
1

2( 1.5) 0
L

x
x


   



2
2

2( 1.5) 0
L

x
x


   



1 2 2 0
L

x x



   


Quadratic programming problem
- Objective function: quadratic form
- Constraint: linear form

[Example] Lagrange Multiplier for Equality Constraints
- Quadratic Programming Problem (1/2)
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2
2

2
1 )5.1()5.1()(  xxf x

02)( 21  xxh x

Original Problem

)2(

)5.1()5.1(

)()()  ,(

21

2
2

2
1






xx

xx

hfL



 xxx

Lagrange Function

Necessary Condition: 

0)()( ***  xx hf 

)()( *** xx hf  

75.0f

5.0f

1 2

1

2

The direction where        
is increased

)(xf : )(xf

0h






















1

1
)(,

)5.1(2

)5.1(2
)(

2

1 xx h
x

x
f













1

1
)(Cf

C











1

1
)(Ch

0.0)(,5.0)(  CC hf

02*
2

*
1  xx

)()( *** xx hvf 

0.0)(,75.0)(  DD hf

D












73.1

0
)(Df











1

1
)(Dh

The gradient vector of the objective function and constraint 
are on the same line and proportional to each other, and the 
Lagrange multiplier v* is the proportionality constant.

1,
1

1
)(,

1

1
)( * 




















 CC hf

But the point D is not a candidate minimum, because the 
gradient vector of the objective function and constraint are 
not on the same line.

**
2

**
1 )5.1(2  ,)5.1(2 vxvx 

1,1 **
2

*
1  vxx (The point C is

the stationary point.)

Minimize

* *( ) 0L ,  x

Subject to

Minimize

1x

2x

Quadratic programming problem
- Objective function: quadratic form
- Constraint: linear form

)(xh : The direction where       
is increased

)(xh

At the candidate minimum C, the meaning of                        is

[Example] Lagrange Multiplier for Equality Constraints
- Quadratic Programming Problem (2/2)
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[Example] Solving Nonlinear Constrained Optimization 
Problem by Using the Lagrange Multiplier (1/4)

 There is a sphere whose center is (0, 0, 0) and radius is c.
 Determine the maximum volume of the rectangular solid which is 

circumscribed* in the sphere.  

1 2 3( , , )x x x

1x

2x

3x

* To draw a geometric figure around another figure so that the two are in contact but do not intersect.
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[Example] Solving Nonlinear Constrained Optimization 
Problem by Using the Lagrange Multiplier (2/4)
 Mathematical Modeling

1 2 3( , , )x x x

1x

2x
3x Because the vertices of the rectangular 

solid are on the surface of the sphere,

1 2 3 1 2 3( , , ) 2 2 2f x x x x x x  
The volume of the rectangular sold f is

2 2 2 2
1 2 3 1 2 3( , , ) 0h x x x x x x c    

2 2 2 2) :cf equation for a sphere x y z r  

1 2 3 1 2 3

1 2 3

( , , ) 2 2 2

 8

Maximize f x x x x x x

x x x

  



2 2 2 2
1 2 3 1 2 3

 

( , , ) 0

Subject to

h x x x x x x c    

1 2 3 1 2 3 ( , , ) 8Minimize f x x x x x x 

2 2 2 2
1 2 3 1 2 3

 

( , , ) 0

Subject to

h x x x x x x c    

22x

12x

32x
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[Example] Solving Nonlinear Constrained Optimization 
Problem by Using the Lagrange Multiplier (3/4)

 Solution (1/2)

1 2 3 1 2 3 ( , , ) 8Minimize f x x x x x x 

2 2 2 2
1 2 3 1 2 3

 

( , , ) 0

Subject to

h x x x x x x c    

1 2 3 1 2 3 1 2 3( , , , ) ( , , ) ( , , )L x x x f x x x h x x x  

1 2 3( , , , ) 0L x x x  

2 2 2 2
1 2 3 1 2 38 ( )x x x x x x c     

Lagrange function for this problem is as follow.

2 3 1
1

8 2 0
L

x x x
x


   



2 2 2 2
1 2 3 0

L
x x x c




    


1 3 2
2

8 2 0
L

x x x
x


   



1 2 3
3

8 2 0
L

x x x
x
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[Example] Solving Nonlinear Constrained Optimization 
Problem by Using the Lagrange Multiplier (4/4)

 Solution (2/2)

2 3 18 2 0x x x  

1 3 28 2 0x x x  

1 2 38 2 0x x x  
2 2 2 2
1 2 3 0x x x c   

①

②

③

④

Equation ①  x1

Equation ②  x2

Equation ③  x3

2
1 2 3 18 2 0x x x x  

2
1 2 3 28 2 0x x x x  

2
1 2 3 28 2 0x x x x  

2 1 2 3
1

4x x x
x




2 1 2 3
2

4x x x
x




2 1 2 3
3

4x x x
x




Substitute these into the equation ④

21 2 3 1 2 3 1 2 34 4 4
0

x x x x x x x x x
c

  
   

21 2 312x x x
c




1 2 3
2

12x x x

c
 ⑤

Substitute the equation ⑤ into 
the equation ①

1 2 3
2 3 12

12
8 2 0

x x x
x x x

c
  

2
1 2 3

2 3 2

24
8 0

x x x
x x

c
  

2
1

2 3 2

3
8 1 0

x
x x

c

 
   

 

2
1
2

3
1 0

x

c
 

2
1
2

3
1

x

c


2
2
1 3

c
x 

1
3

c
x  

1 ,
3

c
x 

Because x1 is a length, it must be
positive.

x2 and x3 are found in the same way.

2 ,
3

c
x  3

3

c
x 

3

1 2 3

8
8

3 3

c
x x x 

If x2 or x3 are zero 0, the 
volume of the rectangular 
solid is zero and the 
solution is trivial. Therefore,

So, the maximum volume is
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[Summary] Constrained Optimization Method by Using
the Lagrange Multiplier

 Constrained Optimization Problem

 Definition of the Lagrange function (L)

),   ...  ,,()( 21 nxxxff x

pihi ,  ...  ,1     ,0)( x

)()(

)()(),(
1

xhvx

xxvx

T

p

i
ii

f

hvfL



 


Minimize

Subject to

vi are the Lagrange multipliers for the equality constraints and are free in sign, 
i.e., they can be positive, negative, or zero.
<Reason> 
The solution does not change, even if the equality constraint is multiplied by the minus sign.

- Determination of the propeller principal 
dimensions by using the Lagrange multiplier

1

2 ,

p

v

v

v

 
 
 
 
 
  

v


1

2

p

h

h

h

 
 
 
 
 
  

h


- Determination of the principal dimension 
of a ship by using the Lagrange multiplier
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Comparison between Newton’s Method 
and Method of Lagrange Multipliers 

Rfff TT  dxHddxxdx )(
2

1
)()()( ****

By defining x - x* = d,  the Taylor series expansion for the function of multi variables is as follows.

Sufficient conditions for x = x*

to be a local minimum0)(
2

1 * dxHdT 

MinimizeGiven: ( )f x

Necessary condition for
x = x* to be a 
candidate local minimum
(stationary point)

,0)( *  Tf x



Newton’ Method for Unconstrained Optimization Problem 

Method of Lagrange Multipliers for Constrained Optimization Problem 

MinimizeGiven: ( )f x

1 2 3( , , ) 0h x x x 

0df dh   : Undetermined Coefficient ‘Lagrange multiplier’

Find: Local minimum point

Find: Local candidate minimum point

Define Lagrange function, 
Necessary condition for x = x*

to be a candidate local minimum  L = 0
(stationary point)



L df dh  
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Kuhn-Tucker Necessary Condition for 
Inequality Constraints
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2
2

2
1 )5.1()5.1()(  xxf x

02)( 21  xxg x

Original Problem

 

)2(

)5.1()5.1(

)()()  ,  ,(

2
21

2
2

2
1

2

sxxu

xx

sgufsuL





 xxx

Lagrange Function

Necessary Condition:           

75.0f

5.0f

1

2

0g













1

1
)(Cf

C











1

1
)(Cg

0.5

0.5

0.0)(,5.0)(  CC gf

5.0g1 2

02  ,02

0)5.1(2  ,0)5.1(2

2
21

2
2

1
1

















us
s

L
sxx

u

L

ux
x

L
ux

x

L

0u

(1) If s = 0, (Inequality constraint is transformed to the equality constraint.)

(2) If u = 0, (Inequality constraint is not active.)

1,1 **
2

*
1  uxx

1,0,5.1 2**
2

*
1  suxx (The point D: the constraint is violated.)

 Candidate minimum point (The point C)

 02)( 2
21

2  sxxsg x D

0)( ***  ,  s,  uL x

Minimize

Subject to

Minimize

We can transform an inequality 
constraint to an equality constraint by 
adding a new variable, called the slack 
variable.

Quadratic programming 
problem
- Objective function: quadratic form
- Constraint: linear form

Linear indeterminate 
equation

Nonlinear indeterminate equation

- At first, we find the 
solution for the nonlinear  
indeterminate equation of

- And substitute u=0 or 
s=0 into the linear 
indeterminate equation.

- Then, solve the linear 
equation system.

0 or 0u s 

Quadratic Programming Problem
with Inequality Constraint
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Inequality constraint

migi ,  ...  ,1     ,0)( x
To transform the inequality constraints to the equality constraints,
the slack variables si

2 are introduced:

misg ii ,  ...  ,1     ,0)( 2 x

)()()()(),(
1

xhvxxxvx T
p

i
i fhvfL  



vi are the Lagrange multipliers for the equality 
constraints and are free in sign.

[Ref] Lagrange function for the equality constrained problem

Lagrange function for the inequality constrained problem
Since the inequality constraint can be transformed to the equality constraint by introducing 
the slack variable, the Lagrange function is defined as

),)(()())(()(),,( 2

1

2 sxguxxxsux  


T
m

i
iii fsgufL

ui are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
si are the slack variables to transform the inequality constraints to the equality constraints.

0iu

Necessary Condition of Candidate Local Optimal Solution for 
the Inequality Constrained Problem (1/2)
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ui are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
si are the slack variables to transform the inequality constraints to the equality constraints.

Lagrange function for the inequality constrained problem

The necessary condition of the candidate local optimal solution for the inequality 
constrained problem 

0sux  ),,( ***L


nj
x

g
u

x

f

x

L

j

i
m

i
i

jj

,  ...  ,1      ,0
1

* 









 



m,  ...  ,1     ,0)(
2** 




isg
u

L
ii

i

x

misu
s

L
ii

i

,  ...  ,1     ,0** 



miui ,  ...  ,1     ,0* 

))(()())(()(),,( 2

1

2 sxguxxxsux  


T
m

i
iii fsgufL

Necessary Condition of Candidate Local Optimal Solution for 
the Inequality Constrained Problem (2/2)

where,
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nj
x

g
u

x

h
v

x

f

x

L

j

i
m

i
i

j

i
p

i
i

jj

,  ...  ,1      ,0
1

*

1

* 













 



pih
v

L
i

i

,  ...  ,1     ,0)( * 



x

m,  ...  ,1     ,0)(
2** 




isg
u

L
ii

i

x

misu
s

L
ii

i

,  ...  ,1     ,0** 



miui ,  ...  ,1     ,0*  The value of the objective function and gradient vectors have to be calculated a x*.

If x* is the candidate local minimum point, the equations 
from the Kuhn-Tucker necessary condition have to be 
satisfied.
Therefore, K-T condition can be used to find the 
candidate local minimum point for the equality and 
inequality constrained problem.

Optimization
Problem

Minimize ) ,  , ,()( 21 nxxxff x

,...,pihi 1   ,0)( xSubject to

,...,migi 1   ,0)( x

Equality constraints

Inequality constraints

Definition of
the Lagrange function

Kuhn-Tucker necessary condition: 0suvx  ),,,(L

))(()()(

))(()()(),,,(

2

1

2

1

sxguxhvx

xxxsuvx



 


TT

m

i
iii

p

i
ii

f

sguhvfL

vi are the Lagrange multipliers for the equality constraints and are free in sign.
ui are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
si are the slack variables to transform the inequality constraints to the equality constraints.

Kuhn-Tucker Necessary Condition for Inequality Constraints
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0232 121
1





uxxx
x

L

0232 212
2





uxxx
x

L

0,0,06 222
2

2
1 




ussxx
u

L

02 



us
s

L

21
2

2
2

1 3)( xxxxf x

06)( 2
2

2
1  xxg x

Minimize

CASE #2: 0s (The solution point is on the boundary of the inequality 
constraint. The inequality constraint is considered as active.)

 There are two cases.

)6(3),,( 22
2

2
121

2
2

2
1 sxxuxxxxsuL x

1

2

3

CASE #1: 0u

023

032

21

21




xx

xx
0)(,00 2121  **** x,xfx,x

(The inequality constraint is considered as inactive at the solution point.)

 Point A:

①

②

③

Rearrange
the equation ① 1 2 12 3 2 0,x x ux   2

1

3
1

2

x
u

x
  

Substitute u
into
the equation ②

2
2 1 2

1

3
2 3 2( 1 ) 0

2

x
x x x

x
    

2
2

2 1 2
1

2 3 2 3 0,
x

x x x
x

   
2
2

1
1

3 3 ,
x

x
x

 2 2
2 1x x

Substitute x2

into
the equation ③

2
12 6,x  1 3x  

A

[Example] Nonlinear Constrained Optimization Problem #1 
(1/2)
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CASE #1: 0u

CASE #2: 0s
023

032

21

21




xx

xx
0)(,00 2121  **** x,xfx,x

2

5
,321  uxx

B

C

A
3),(,3 *

2
*
1

*
2

*
1  xxfxx2

1
,321  uxx Point B:

2

1
,321  uxx  3),(,3 *

2
*
1

*
2

*
1  xxfxxPoint C:

Point E:

D

E

2

5
,321  uxx Point D: 15),(,3,3 *

2
*
1

*
2

*
1  xxfxx

15),(,3,3 *
2

*
1

*
2

*
1  xxfxx

(The inequality constraint is considered as inactive at the solution point.)

 Point A:

(The solution point is on the boundary of the inequality 
constraint.)

[Example] Nonlinear Constrained Optimization Problem #1 
(2/2)
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042)(

042)(

212

211




xxg

xxg

x

x

Minimize

Subject to

222)( 21
2
2

2
1  xxxxf x

Lagrange function

x1

x2

1 2 3 4

1

2

3

4

A

g2 = 0

g1 = 0

9
2*

3
4

3
4* )(),,(  xx f

Minimum at Point A

Feasible region

f = 1.32

f = 0.64

2 2
1 2 1 2

2
1 1 2 1

2
2 1 2 2

( , , ) 2 2 2

( 2 4 )

( 2 4 )

L x x x x

u x x s

u x x s

    

    

    

x u s

[Example] Nonlinear Constrained Optimization Problem #2
- Find the Optimal Solution for the Quadratic Programming Problem
by using the Kuhn-Tucker Necessary Condition : xi are free in sign (1/3)

Quadratic programming 
problem
- Objective function: quadratic form
- Constraint: linear form
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Lagrange function

Kuhn-Tucker necessary condition:

2 2
1 2 1 2

2
1 1 2 1

2
2 1 2 2

( , , ) 2 2 2

( 2 4 )

( 2 4 )

L x x x x

u x x s

u x x s

    

    

    

x u s

042)(

042)(

212

211




xxg

xxg

x

x

222)( 21
2
2

2
1  xxxxf x

0sux  ),,(L

1 1 2
1

2 2 2 0
L

x u u
x


    

 2 1 2
2

2 2 2 0
L

x u u
x


    



2
1 2 1

1

2 4 0
L

x x s
u


     


2

1 2 2
2

2 4 0
L

x x s
u


     



1 1
1

2 0
L

u s
s


 

 2 2
2

2 0
L

u s
s


 


0, 1,2iu i 

[Example] Nonlinear Constrained Optimization Problem #2
- Find the Optimal Solution for the Quadratic Programming Problem
by using the Kuhn-Tucker Necessary Condition : xi are free in sign (2/3)
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Lagrange function

x1

x2

1 2 3 4

1

2

3

4

AB

C
g2 = 0

g1 = 0

9
2*

3
4

3
4* )(),,(  xx f

Minimum at Point A

Feasible region

f = 1.32

f = 0.64

2 2
1 2 1 2

2
1 1 2 1

2
2 1 2 2

( , , ) 2 2 2

( 2 4 )

( 2 4 )

L x x x x

u x x s

u x x s

    

    

    

x u s

D

I

Case #1: s1=s2=0

9
2

213
4

21 ,  uuxx

Case #2: u1=s2=0, (Point B)

5
12

15
2

25
7

25
6

1 ,,,  suxx

Case #3: u2=s1=0, (Point C)

5
12

25
2

15
6

25
7

1 ,,,  suxx

Case #4: u1=u2=0, (Point D)

1,1 2
2

2
121  ssxx

It has to be nonnegative (g1).

It has to be nonnegative (g2).

It has to be nonnegative (g1, g2).

(Minimum at Point A)

[Example] Nonlinear Constrained Optimization Problem #2
- Find the Optimal Solution for the Quadratic Programming Problem
by using the Kuhn-Tucker Necessary Condition : xi are free in sign (3/3)
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042)(

042)(

212

211




xxg

xxg

x

x

Minimize

Subject to

222)( 21
2
2

2
1  xxxxf x

Minimum point:
9
2*

3
4

3
4* )(),,(  xx f

0,0 21  xx

x1

x2

1 2 3 4

1

2

3

4

A

g2 = 0

g1 = 0

9
2*

3
4

3
4* )(),,(  xx f

Minimum at Point A

Feasible region

f = 1.32

f = 0.64

042)(

042)(

212

211




xxg

xxg

x

x

Minimize

Subject to

222)( 21
2
2

2
1  xxxxf x

1 20, 0x x   

2
1 1 2 1

2
2 1 2 2

( ) 2 4 0

( ) 2 4 0

g x x s

g x x s

     

     

x

x

Minimize

Subject to

222)( 21
2
2

2
1  xxxxf x

2 2
1 1 2 20, 0x x      

Inequality constraints whose form are “”:
Introduce the slack variable.

[Example] Nonlinear Constrained Optimization Problem #3
- Optimum Solution for the Case that xi are ”Nonnegative” (1/4)
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x1

x2

1 2 3 4

1

2

3

4

A

g2 = 0

g1 = 0
9
2*

3
4

3
4* )(),,(  xx f

Minimum at Point A

Feasible region

f = 1.32

f = 0.64

2
1 1 2 1

2
2 1 2 2

( ) 2 4 0

( ) 2 4 0

g x x s

g x x s

     

     

x

x

Minimize

Subject to

222)( 21
2
2

2
1  xxxxf x

2 2
1 1 2 20, 0x x      

Lagrange function
2 2
1 2 1 2

2
1 1 2 1

2
2 1 2 2

2 2
1 1 1 2 2 2

( , , , , ) 2 2 2

( 2 4 )

( 2 4 )

( ) ( )

L x x x x

u x x s

u x x s

x x   

    

    

    

     

x u s ζ δ

Kuhn-Tucker necessary condition: ( , , , , )L x u s ζ δ 0

2
1 1

1

0
L

x



  


2
2 2

2

0
L

x



  


1 1 2 1
1

2 2 2 0
L

x u u
x


     

 2 1 2 2
2

2 2 2 0
L

x u u
x


     


2

1 2 1
1

2 4 0
L

x x s
u


     


2

1 2 1
2

2 4 0
L

x x s
u


     



1 1
1

2 0
L

u s
s


 

 2 2
2

2 0
L

u s
s


 



1 1
1

2 0
L  



 
 1 1

1

2 0
L  



 


Quadratic programming 
problem
- Objective function: quadratic form
- Constraint: linear form

[Example] Nonlinear Constrained Optimization Problem #3
- Optimum Solution for the Case that xi are ”Nonnegative” (2/4)
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, , 0, 1, 2i i iu i   
1 1

1

2 0
L  



 


Kuhn-Tucker necessary condition: ( , , , , )L x u s ζ δ 0

2
1 1

1

0
L

x



  


2
2 2

2

0
L

x



  


1 1
1

2 0
L  



 


1 1 2 1
1

2 2 2 0
L

x u u
x


     

 2 1 2 2
2

2 2 2 0
L

x u u
x


     


2

1 2 1
1

2 4 0
L

x x s
u


     


2

1 2 2
2

2 4 0
L

x x s
u


     



1 1
1

2 0
L

u s
s


 

 2 2
2

2 0
L

u s
s


 


2

1 1x  2
2 2x 

Substitute Substitute

Multiply to the both sides.1

2
1 12 0   2

2 22 0  

Multiply to the both sides.2

2 22 0x 

1 1 2 1
1

2 2 2 0
L

x u u
x


     

 2 1 2 2
2

2 2 2 0
L

x u u
x


     


2

1 2 1
1

2 4 0
L

x x s
u


     


2

1 2 2
2

2 4 0
L

x x s
u


     



1 1
1

2 0
L

u s
s


 

 2 2
2

2 0
L

u s
s


 



1 12 0x 

Kuhn-Tucker necessary condition: ( , , , , )L x u s ζ δ 0

, 0, 1, 2i iu i  

Quadratic programming 
problem
- Objective function: quadratic form
- Constraint: linear form

[Example] Nonlinear Constrained Optimization Problem #3
- Optimum Solution for the Case that xi are ”Nonnegative” (3/4)
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Lagrangian function

x1

x2

1 2 3 4

1

2

3

4

AB

C
g2 = 0

g1 = 0

9
2*

3
4

3
4* )(),,(  xx f

Minimum at Point A
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x u s ζ δ

Quadratic programming 
problem
- Objective function: quadratic form
- Constraint: linear form

[Example] Nonlinear Constrained Optimization Problem #3
- Optimum Solution for the Case that xi are ”Nonnegative” (4/4)
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6.2 Quadratic Programming (QP)
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Lagrange function

0, iiu where,

[Summary] Solution of QP Problem
Using the Kuhn-Tucker Necessary Condition
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Solution Procedure of Quadratic Programming (QP) Problem
- Approximate the Original Problem as a QP Problem
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Matrix form
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xxxxx

xxxxxSubject to
The first-order(linear) Taylor series expansion of the equality constraints

The first-order(linear) Taylor series expansion of the inequality constraints

The second-order Taylor series expansion of the objective function

: Quadratic objective function

: Linear equality constraints

: Linear inequality constraints
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Solution Procedure of Quadratic Programming (QP) Problem
- Construction of Lagrange Function

Minimize
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Solution Procedure of Quadratic Programming (QP) Problem
- Applying the K-T Necessary Condition to the Lagrange Function

54
Topics in Ship Design Automation, Fall 2016, Myung-Il Roh

Solution Procedure of Quadratic Programming (QP) Problem
- Method 1: Direct Solving the Eqs. from the K-T Conditions

Optimization problem

* *
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Kuhn-Tucker necessary condition:                             0suvx  ),,,(L

Minimize ) ,  , ,()( 21 nxxxff x

,...,pihi 1   ,0)( xSubject to

( ) 0,    1ig i ,...,m x

Equality constraint

Inequality constraint

2

1 1

( , , , ) ( ) ( ) ( ( ) )
p m

i i i i i
i i

L f v h u g s
 

    x v u s x x xDefinition of 
Lagrange function

vi are the Lagrange multipliers for the equality constraints and are free in sign.
ui are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
si are the slack variables to transform the inequality constraints to the equality constraints.

Linear indeterminate equations

Nonlinear indeterminate equations

Method 1:
- Find the solutions which satisfy the nonlinear 

indeterminate equations.
- Check whether the solutions satisfy the linear 

indeterminate equations and determine the solution of this 
problem.

- Human can find the solution of this problem easily by 
using this method.
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Kuhn-Tucker Necessary Condition:

①

Multiply si both side of the Equation ①

0i iu s 

Although the Equation ① is multiplied by si, 
the solution (                     ) is not changed.0 0i iu or s 
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Transform Kuhn-Tucker Necessary Condition:             
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Solution Procedure of Quadratic Programming (QP) Problem
- Method 2: Formulate the Problem of the K-T Condition as a LP Problem (1/3)
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Kuhn-Tucker Necessary Condition:             
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where, mtoisu ii   1  ;0, 

Check whether the solutions obtained from the linear 
indeterminate equations satisfies the nonlinear 
indeterminate equations and determine the solution.

Since these equations are linear in 
the variables d, s’, u, v, this problem 
is a linear programming problem 
only having the equality constraints.
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0i to m
Linear indeterminate equationsNonlinear indeterminate equations

Solution Procedure of Quadratic Programming (QP) Problem
- Method 2: Formulate the Problem of the K-T Condition as a LP Problem (2/3)

①’
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where mtoisu ii   1  ;0, 

Check whether the solutions obtained from the linear 
indeterminate equations satisfies the nonlinear 
indeterminate equations and determine the solution.

Since these equations are linear in 
the variables d, s’, u, v, this problem 
is a linear programming problem 
only having the equality constraints.

0,i i
i

L
u s

s

  


0i to m
Linear indeterminate equationsNonlinear indeterminate equations

,)1()1()1(   ppp zyv

Also, the Lagrange multipliers         for the equality constraints are free in sign, we may 
decompose them as follows to use the Simplex method.

Since the design variables d(n×1) are free in sign, we may decompose them as follows to use 
the Simplex method.

)1;0,0(,)1()1()1( ntoidd iinnn  



 ddd
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Kuhn-Tucker Necessary Condition:             ( , , , )L d v u s 0

Solution Procedure of Quadratic Programming (QP) Problem
- Method 2: Formulate the Problem of the K-T Condition as a LP Problem (3/3)
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 dddBecause d and v are 

free in sign.

Introduce the artificial variables, define the artificial objective function, and solve the linear programming 
problem by using the Simplex method.

Solution Procedure of Quadratic Programming (QP) Problem
- Method 2: Simplex Method for Solving a QP Problem (1/2)
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where mtoisu ii   1  ;0, 

Check whether the solutions obtained from the linear 
indeterminate equations satisfies the nonlinear 
indeterminate equations and determine the solution.

Since these equations are linear in 
the variables d, s’, u, v, this problem 
is a linear programming problem 
only having the equality constraints.
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L
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0i to m
Linear indeterminate equationsNonlinear indeterminate equations

Kuhn-Tucker Necessary Condition:             ( , , , )L d v u s 0
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Introduce the artificial variables, define the artificial objective function, and 
solve the linear programming problem by using the Simplex method.

1

2
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Y
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Artificial variables

How to define the artificial objective function

1. Define an one equation by sum of all the equations from the 1st row to (n + m + p)th row.
2. Define the sum of the all artificial variables (Y1 + Y2 + … + Yn+m+p) as an objective function (w).

0,i i
i

L
u s

s

  


0i to m

- Determine an initial basic feasible solution (to satisfy the artificial objective function (w) to be 
zero) for the linear programming problem by using the Simplex method (Phase 1).

- Check whether the initial basic feasible solutions satisfy the following nonlinear 
indeterminate equations and determine it as a solution.

Solution Procedure of Quadratic Programming (QP) Problem
- Method 2: Simplex Method for Solving a QP Problem (2/2)
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)1)(()1)222(())222()((   pmnpmnpmnpmn DXB

Simplex Method for Solving Quadratic Programming Problem

Kuhn-Tucker Necessary Condition(Matrix form)

)1)(()1)(()1)222(())222()((   pmnpmnpmnpmnpmn DYXB
If any of the elements in D is (are) negative, the corresponding equation must be multiplied by -1 to have a nonnegative element on the right side.

3. The artificial objective function is defined as follows.
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Add the elements of the jth column of the matrix B and change its sign (Initial relative objective coefficient).

4. Solve the linear programming problem by using the Simplex and check whether the solution 
satisfies the following equation.

Initial value of the artificial objective function

1. The problem to solve the Kuhn-Tucker necessary condition is same as the problem having only 
the equality constraints (linear programming problem).

mtoisu ii   1  ;0  : This equation is used to check whether the solution satisfies this equation.

Solution Procedure of Quadratic Programming (QP) Problem
- Summary of Method 2 of Simplex Method for Solving Quadratic Programming Problem

2. To solve the linear indeterminate equations, we introduce the artificial variables, define the 
artificial objective function, and determine the initial basic feasible solution by using the Simplex 
method.
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Optimization problem

* *
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Kuhn-Tucker necessary condition:                             0suvx  ),,,(L

Minimize ) ,  , ,()( 21 nxxxff x

,...,pihi 1   ,0)( xSubject to

( ) 0,    1ig i ,...,m x

Equality constraint

Inequality constraint

2

1 1

( , , , ) ( ) ( ) ( ( ) )
p m

i i i i i
i i

L f v h u g s
 

    x v u s x x xDefinition of 
Lagrange function

vi are the Lagrange multipliers for the equality constraints and are free in sign.
ui are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
si are the slack variables to transform the inequality constraints to the equality constraints.

Linear indeterminate equations

Nonlinear indeterminate equations

Method 1:
- Find the solutions to satisfy the nonlinear indeterminate 

equations.
- Check whether the solutions satisfy the linear 

indeterminate equations and determine the solution of this 
problem.

- Human can find the solution of this problem easily by 
using this method.

Method 2: 
- Find the solutions to satisfy the linear indeterminate 

equations by using the Simplex method.
- Check whether the solutions satisfy the nonlinear 

indeterminate equations and determine the solution of this 
problem.

- Since this method is more systematical, it is useful for the 
computational approach.

Solution Procedure of Quadratic Programming(QP) Problem
- Comparison between Method 1 and Method 2
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6.3 Sequential Linear Programming 
(SLP)
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Sequential Linear Programming (SLP)

 Define the linear programming (LP) problem by linearizing the 
objective function and the constraints at the current design point.

 Compute the design change by solving the linear programming 
problem and obtain the improved design point.

 This method is to find the optimal solution by solving the linear 
programming problem sequentially.

)()()1( kkk dxx 

Current 
design 
point

Design change obtained by solving the LP problem.Improved 
design 
point
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The optimal solution:

3)(),3,3( **  xx f

The starting design point: ),1,1()0( x

001.021  

Choose move limits such that a  
15% design change is permissible.

1 2 3 4

1

2

3

4

x1

x2

A
B

C

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

x(0) = (1, 1)

f = -25
f = -20

f = -10
f = -3

f = -1

Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (1/6)
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g1 = x1
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2 - 6.0 = 0

)3,3(* x

x(0) = (1, 1)

f = -25
f = -20

f = -10
f = -3

(1) Iteration 1 (k = 0)

(i) Step 1

(0)
1 2(1,1),  0.001   x

From the given point (starting point), the current design 
point is as follows.

2
1 3

2

3

(1,1) 1

(1,1) 0

(1,1) 1 0

(1,1) 1 0

f

g

g

g

 
  

  
  

 Constraint is satisfied.

 Constraint is satisfied.

 Constraint is satisfied.

(ii) Step 2: Evaluate the objective and constraint function at the current design point.

f = -1

Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (2/6)
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(1) Iteration 1 (k = 0)

(iii) Step 3: Define a LP problem (linearize the objective function).
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(0) (0) (0) (0) (0)( ) ( ) ( )Tf f f    x x x x x The first-order (linear) Taylor series expansion 
of the objective function
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Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (3/6)
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2 2
1 1 2

2 1
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2
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(1) Iteration 1 (k = 0)

(iii) Step 3: Define a LP problem (linearize the constraints).
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j jg g j to m    x x x

1 2

(0) (0) (0) (0) (0) (0), , ( ) ( ) ( )j jg gT T
j j j jx xg g g g

 
 

          x d x x x d
Subject to

   

 

 

(0)
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The linearized constraints

The first-order (linear) Taylor series 
expansion of the constraintsSubject to (0) (0) (0) (0) (0)( ) ( ) ( ) 0; 1  T

j j jg g g j to m      x x x x x

)()()1( kkk dxx 

(0) (1,1)xSubstitute

Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (4/6)

1 2 3 4

1

2

3

4

x1

x2

A B

C

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

x(0) = (1, 1)

f = -
25 f = -

20 f = -
10 f = -

3
f = -
1

001.0),1,1( 21
)0(  x
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Minimize

Subject to
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1)1,1(,1)1,1(

,)1,1(,1)1,1(

32

3
1

3
1

1

32

3
2

1









gg

gf

gg

gf

Limits must be imposed on changes 
in design called move limit. The graphical solution for 

the linearized problem is 
as follows.

15.0,15.0 21  dd

To solve the problem, the Simplex method can be used.

6
d1

d2

1 2 3 4 5-1-2

-1

-2

1

2

3

4

A B

C

d1=-1

d2=-1
d1+d2=2

1 2 0f d d   

0.15

move limit

1 2 0.3f d d    

(iv) Step 4: Solve the LP problem for the design change (d(0)).

Linearize the objective 
function and constraints.

The design change 
is obtained.

Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (5/6)
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(vi) Step 6: Update the design point as x(k+1) = x + d(k). Set k = k+1 and go to Step 2.

(v) Step 5: Check for convergence by using the obtained design change d(0).

)15.0,15.0(),( 21
)0(  ddd

Since                                                                              , the criterion for convergence is not satisfied.

)15.1,15.1()15.0 ,15.0()1,1()0()0()1,1()1(  dxxx

11 kk

Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (6/6)

)001.0(212.015.015.0 2
22)0(  d
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where,

)()()()()( )()()( kkTkkk fff xxxxx Minimize
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xxxxx

xxxxxSubject to

The first-order(linear) Taylor series 
expansion of the objective function

The first-order (linear) Taylor series expansion of the equality constraints

The first-order (linear) Taylor series expansion of the inequality constraints
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Matrix form

Minimize

Subject to
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 Linear Programming Problem
 It can be solved by using the Simplex method.

)( )()()( k
iu

k
i

k
iliuiil xxxddd 

: Linearized objective 
function

: Linearized equality 
constraint

: Linearized inequality 
constraint

Summary of Sequential Linear Programming (SLP)

Define:
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xgaxhnxfc

gbhefff







,/)(  ,/)(  ,/)(

),(  ),(  ),()(

xxx

xxxxx



2017-06-17

36

71
Topics in Ship Design Automation, Fall 2016, Myung-Il Roh

Summary of the SLP Method (1/2)

 Step 1: Estimate a starting design point as x(0). Set k = 0. 
Specify two small numbers, 1, 2 (criterion for violating 
the constraints and convergence).

 Step 2: Evaluate objective and constraint function at 
current design point x(k). Also evaluate the objective and 
constraint function gradients at the current design point.

 Step 3: Select the proper move limits xil
(k) and xiu

(k) as 
some fraction of the current design point. Define the 
linear programming problem.

)()()( k
iu

k
i

k
il xxx 
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Summary of the SLP Method (2/2)

 Step 4: Solve the linear programming problem for d(k) by 
using the Simplex method.

 Step 5: Check for convergence. If, gi  1 (i = 1 to m), |hi| 
1 (i = 1 to p), and d(k) 2, then stop and the current 
design point x(k) is the optimal solution. Otherwise, 
continue.

 Step 6: Update the design point as x(k+1) = x + x(k), Set k = 
k+1 and go to Step 2.
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Limitations of SLP Method

 The move limits of the design variables should be defined by the user.
 If the move limits are too small, it takes much time to find the optimal 

solution.
 If the move limits are too large, it can cause oscillations in the design point 

during iterations.
 Thus, the performance of the method depends heavily on selection of move 

limits.
)(xf

x)1( nx)(nx
)2( nx

Original objective function

Linearized objective function Linearized objective function

 The optimal solution cannot 
be obtained, because of the 
oscillations in the design 
point during iterations.
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6.4 Sequential Quadratic Programming 
(SQP)
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Sequential Quadratic Programming (SQP)

 Define the quadratic programming (QP) problem by approximating 
quadratic form of the objective function and linear form of the 
constraints at the current design point.

 Compute the design change by solving the quadratic programming 
problem and obtain the improved design point.

 This method is to find the optimal solution by solving the quadratic 
programming problem sequentially.

( 1) ( ) ( )k k k
k

  x x d

Current 
design 
point

Search direction obtained by solving the QP problem.Improved 
design 
point Step size obtained by minimizing the penalty function.

Design change
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Define:
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ijijijijii
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xgaxhnxfc
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Matrix form

Minimize

Subject to
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xxxxx

xxxxxSubject to

: Quadratic objective function

: Linear equality constraints

: Linear inequality constraints

The first-order (linear) Taylor series expansion of the equality constraints

The first-order (linear) Taylor series expansion of the inequality constraints

The second-order Taylor series expansion of the objective function

Formulation of the Quadratic Programming Problem
to Determine the Search Direction
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Procedures of SQP Method

x1

x2

Optimal 
solution

x1

x2

Current design point

d(0)

x1

x2

d(0)

Go to the Step 1 at the 
improved design point.

Stopping criteria
If the magnitude of 
the search direction 
|d(0)| is smaller than a 
small value (epsilon), 
then stop.

Calculate the search direction (d(0)) by 
solving the quadratic programming 
problem.

Step 2

Define the quadratic 
programming problem at 
the current point.

Step 1

Transform the constrained 
optimization problem to the 
unconstrained problem by 
modifying the objective 
function which has added 
penalty for possible 
constraint violations to the 
current value of the 
objective function.
Then calculate the step size
using the one dimensional 
search method, e.g., Golden 
section search method.

Step 3

Improved design point

Linearized constraint 
Improved design point

x1

x2

Current design point

Objective function is approximated 
to the quadratic form.

Quadratic programming problem
- Objective function: quadratic form
- Constraint: linear form
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Difference between Sequential Quadratic Programming (SQP) and 
CSD (Constrained Steepest Descent) Method

 Sequential Quadratic Programming (SQP)
 ① First, we define a quadratic programming problem for the objective 

function and constraints at the current design point, and find the search 
direction d(k).

 ② We define the penalty function by adding a penalty for possible 
constraint violations to the current value of the objective function, and
calculate the step size αk to minimize the penalty function. For 
determination of the step size, one dimensional search method, e.g., 
Golden section search method can be used. And we determine the 
improved design point.

 ③ At the improved design point, we go to ①.
 The method is to find the optimal solution by solving the quadratic 

programming problem sequentially.

 CSD (Constrained Steepest Descent) method
 This method is a kind of the SQP method.
 When defining the quadratic programming problem, the Hessian matrix 

is assumed to be equal to the identity Matrix.
 This method uses the Pshenichny’s penalty function.
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Solution Procedure of SQP Using the Example
- Determination of the Search Direction (1/5) [Iteration 1]

2 2
1 1 2

2 1

3 2

1 1
( ) 1.0 0

6 6
( ) 0

( ) 0

g x x

g x

g x

   

  
  

x

x

x

Minimize

Subject to

21
2
2

2
1 3)( xxxxf x Optimal solution: 3)(),3,3( **  xx f

1 2 3 4

1

2

3

4

x1

x2

A
B

C

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

x(0) = (1, 1)

f = -25

f = -20
f = -10

f = -3

2
1 3

2

3

(1,1) 1

(1,1) 0

(1,1) 1 0

(1,1) 1 0

f

g

g

g

 
  

  
  

 Constraint is satisfied.

 Constraint is satisfied.

 Constraint is satisfied.

(i) Step 1: Evaluate the objective function and 
constraints at the current design point.

(1) Iteration 1 (k = 0)

Assume  the starting point is                 .(0) (1,1)x
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2 2
1 1 2

2 1

3 2

1 1
( ) 1.0 0

6 6
( ) 0

( ) 0

g x x

g x

g x

   

  
  

x

x

x

Minimize

Subject to
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2
2

2
1 3)( xxxxf x

(1) Iteration 1 (k = 0)

(ii) Step 2: Define a QP problem (The objective function is approximated to the quadratic form.).

1 2 3 4

1

2

3

4

x1

x2

A B

C

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

x(0) = (1, 1)

f = -25

f = -20

f = -10

f = -3

f = -1

(0) (1,1)x

(0) (0) (0) (0) (0) (0) (0)( ) ( ) ( ) 0.5T Tf f f        x x x x x x H xMinimize

  (0 )

(0)
(0) (0) (0) (0)2 (0)21

1 2 2 1 1 2(0)
2

( ) ( ) 2 3 2 3 0.5( )
d

f f x x x x d d
d

 
       

 
x

x d xMinimize

(0) (0) (0) (0) (0) (0) (0) (0)2 (0)2
1 2 1 2 1 2 1 2( ) (2 3 ) (2 3 ) 0.5( )f x x d x x d d d     d

(0) (0) (0) (0)2 (0)2
1 2 1 2( ) 0.5( )f d d d d    d

(0) (0) (0) (0) (0) (0) (0)( ) ( ) ( ) 0.5T Tf f f       x x x x x x H xMinimize

1 2

(0) (0) , ,f fT
x xf  
 
      x d H I

Objective function is approximated 
to the first order term. Objective function is approximated to the second order term.

Solution Procedure of SQP Using the Example
- Determination of the Search Direction (2/5)
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1 2 3 4

1

2

3

4

x1

x2

A B

C

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

x(0) = (1, 1)

f = -25

f = -20

f = -10

f = -3

f = -1

The first-order (linear) Taylor series expansion 
of the constraints

Subject to (0) (0) (0) (0) (0)( ) ( ) ( ) 0; 1  T
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The linearized constraints
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Solution Procedure of SQP Using the Example
- Determination of the Search Direction (3/5)
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(1) Iteration 1 (k = 0) (0) (1,1)x
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(iii) Step 3: Solve the QP problem to find the search direction (d(0)).

Minimize

Subject to
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* The search direction also can be 
determined using the Simplex method.
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Constrained Optimal Design Problem
(Original problem)

Quadratic Programming Problem



Solution Procedure of SQP Using the Example
- Determination of the Search Direction (4/5)
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(1) (0)
0

(0) x x d

Current 
design point

Search direction obtained from the QP 
problem

Improved 
design point

Find αk : Minimize  (1)f x  (0) )
0

(0f   dx  0f 
Given

Find
1 2 3 4

1

2

3

4

x1

x2

A B

C

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0x(0) = (1, 1)

f = -25

f = -20

f = -10

f = -3

f = -1

(iv) Step 4: After the search direction (d(0)) is determined,
calculate the step size.

Calculate step size minimizing the value of the 
objective function along the search direction

The improved design point can be found along the search direction by minimizing the objective 
function. However, it may violate the original constraints.

(0)
1 2( , ) (1,1)d d d

The search direction is 
determined.

(0)d

0
0

( ) d

Minimum point in the objective function

Therefore, a penalty function should be constructed by adding the penalty for possible constraint 
violations to the current value of the objective function.

(0)
1 2 3

(0)
1 2

( , , ) (0,0,0),

( , ) (1,1)

u u u

d d

 

 

u

d

By property of the nature, the objective function is decreased when the constraints is violated.

Solution Procedure of SQP Using the Example
- Determination of the Search Direction (5/5)
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( ) ( ) ( )( ) ( ) ( )k k k
kf R V   x x x

 0max ,k kR R r
Rk is a positive number called the penalty parameter.

By adding a penalty for possible constraint violations to the current value of the objective function, 
the constrained optimization problem is transformed into the unconstrained optimization problem:

Solution Procedure of SQP Using the Example
- Definition of Penalty Function (Pshenichny’s Descent Function) (1/2)

Penalty function (Pshenichny’s descent function,            )( )( )k x

k: iteration number how many times the QP problem is defined approximately

where,

( )( )kf x : current (kth iteration) value of the objective function

V(x(k)) is either the maximum constraint violation among all the constraints or zero.
V(x(k)) is nonnegative. If all the constraints are satisfied, the value of the V(x(k)) is zero.

},,,;,,,;0max{)( 2121
)(

mp
k ggghhhV x

where,

hp: value of the equality constraint function at the design point x(k)

gp: value of the inequality constraint function at the design point x(k)

Initial value of Rk is 
specified by the user.

Summation of all the Lagrange multipliers

( ) ( )

1 1

p m
k k

k i i
i i

r v u
 

  
( )k
iv : Lagrange multipliers for the equality constraints (free in sign)

: Lagrange multiplier for the inequality constraints (nonnegative)
( )k
iu
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(v) Step 5: Calculate the penalty parameter Rk.
(In this example, the initial penalty parameter is assumed as R0=10.)
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Solution Procedure of SQP Using the Example
- Definition of Penalty Function (Pshenichny’s Descent Function) (2/2)

Since this problem does not have the equality 
constraints, we do not consider the vi.
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After the k-th search direction is found, one dimensional search for the step 
size is started.

     ( , ) ( , ) ( , ) ,k j k j k j
kf R V   x x x
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1 2 1 2
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1 2 3 4

1

2

3

4

x1

x2

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

f = -10

f = -3

0d

A

B

( , ) ( ) ( )
( , )

k j k k
k j x x d

x(0,0)=(1, 1)

The iteration number k does not change during the one dimensional search for the step size. 

(vi) Step 6: 
By using the one dimensional search method, e.g., 
Golden section search method, 
calculate the step size to minimize the penalty 
function along the search direction (d(0)),
and determine the improved design point.

After completing the one 
dimensional search, k is 
changed to k+1:

is changed to        .
( , )k jx ( 1)k x

, (k=0)

Solution Procedure of SQP Using the Example
- Determination of the Step Size

( , ) ( , ) ( , ) ( , )
1 2 3( ) max{0, ( ), ( ), ( )}k j k j k j k jV g g gx x x x

The iteration number k does not change during the one dimensional search method.
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BA

     (0,0) (0,0) (0,0)
0 1 10 0 1f R V         x x x

0 (1,1),dSearch direction:

(0,0) (0,0) (0,0) (0,0)
1 2 3

2
3

, ( ) max{0, ( ), ( ), ( )}

max{0, , 1, 1} 0

where V g g g

    

x x x x

(0, ) (0,0) (0) (0)
(0,0) (1,1) 0 (1,1) (1,1)j d       x x x

1 2 3 4

1

2

3

4

x1

x2

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

f = -10

f = -3

0d

0.0 


(0, ) (0,0) 0.0j  When

A

B

x(0,0)=(1, 1)
-1

x(0,0)=(1, 1)

0, 0k j 

(vi) Step 6: 

Solution Procedure of SQP Using the Example
- Determination of the Step Size Using
the Golden Section Search Method (1/6)
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0)(

00.1
6
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6
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)(
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2
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2
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xg
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xxg

x

x

x

21
2
2

2
1 3)( xxxxf x 0 0 0max{ , }

max{10,0} 10

R R r
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BA

     (0,1) (0,1) (0,1)
0 1.21 10 0 1.21f R V         x x x

(0,1) (0,1) (0,1) (0,1)
1 2 3, ( ) max{0, ( ), ( ), ( )}

max{0, 0.57, 1.1, 1.1} 0

where V g g g
    

x x x x

(0,1) (0) (0)
(0,1) (1,1) 0.1 (1,1) (1.1,1.1)d      x x

1 2 3 4

1

2

3

4

x1

x2

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

f = -10

f = -3

0.0 

Assume                *,(0,1) 0.1 

A

B

x(0,0)=(1, 1)
-1

x(0,0)=(1, 1)
x(0,1)=(1.1, 1.1)

0.1

x(0,1)=(1.1, 1.1)
-1.21

* The initial value of        (0.1) is given by the user. It can be given as 
another value, e.g., 0.5.

( , )k j

(vi) Step 6: 

0 (1,1),dSearch direction: 0, 1k j 

Solution Procedure of SQP Using the Example
- Determination of the Step Size Using
the Golden Section Search Method (2/6)

0)(

0)(

00.1
6

1

6

1
)(

23

12

2
2

2
11






xg
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xxg

x

x

x

21
2
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2
1 3)( xxxxf x 0 0 0max{ , }

max{10,0} 10

R R r
 

)0,0,0(),,( 321
)0(  uuuu
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i
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BA

     (0,2) (0,2) (0,2)
0 1.592 10 0 1.592f R V         x x x

(0,2) (0,2) (0,2) (0,2)
1 2 3, ( ) max{0, ( ), ( ), ( )}

max{0, 0.469, 1.262, 1.262} 0

where V g g g
    

x x x x

(0,2) (0) (0)
(0,2) (1,1) 0.262 (1,1) (1.262,1.262)d      x x

1 2 3 4

1

2

3

4

x1

x2

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

f = -10

f = -3

0.0 


(0,2) 0.1 1.618(0.1) 0.2618   When

A

B

x(0,0)=(1, 1)
-1

x(0,0)=(1, 1)
x(0,1)=(1.1, 1.1)

0.1

x(0,1)=(1.1, 1.1)

x(0,2)=(1.262, 1.262)

0.2618

x(0,2)=(1.262, 1.262)
-1.592

-1.21

(vi) Step 6: 

0 (1,1),dSearch direction: 0, 2k j 

Solution Procedure of SQP Using the Example
- Determination of the Step Size Using
the Golden Section Search Method (3/6)

0)(

0)(
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BA

     (0,3) (0,3) (0,3)
0 2.321 10 0 2.321f R V         x x x

(0,3) (0,3) (0,3) (0,3)
1 2 3, ( ) max{0, ( ), ( ), ( )}

max{0, 0.226, 1.524, 1.524} 0

where V g g g
    

x x x x

(0,3) (0) (0)
(0,3) (1,1) 0.524 (1,1) (1.524,1.524)d      x x

1 2 3 4

1

2

3

4

x1

x2

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

f = -10

f = -3

0.0 

2
(0,3) 0.1 1.618(0.1) 1.618 (0.1) 0.5236    When

A

B

x(0,0)=(1, 1)
-1

x(0,0)=(1, 1)
x(0,1)=(1.1, 1.1)

0.1

x(0,1)=(1.1, 1.1)

x(0,2)=(1.262, 1.262)

0.2618

x(0,2)=(1.262, 1.262)
-1.592

-1.21

x(0,3)=(1.524, 1.524)

0.5236

x(0,3)=(1.524, 1.524)
-2.321

(vi) Step 6: 

Solution Procedure of SQP Using the Example
- Determination of the Step Size Using
the Golden Section Search Method (4/6)

0)(

0)(

00.1
6

1

6

1
)(

23
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2
11






xg

xg

xxg

x

x

x

21
2
2

2
1 3)( xxxxf x 0 0 0max{ , }

max{10,0} 10

R R r
 

)0,0,0(),,( 321
)0(  uuuu
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0 (1,1),dSearch direction: 0, 3k j 
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BA

     (0,4) (0,4) (0,4)
0 3.792 10 0.2638 1.154f R V         x x x

(0,4) (0,4) (0,4) (0,4)
1 2 3, ( ) max{0, ( ), ( ), ( )}

max{0,0.2638, 1.947, 1.947} 0.2638

where V g g g
   

x x x x

(0,4) (0) (0)
(0,4) (1,1) 0.947 (1,1) (1.947,1.947)d      x x

1 2 3 4

1

2

3

4

x1

x2

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

f = -10

f = -3

0.0 

2 3
(0,4) 0.1 1.618(0.1) 1.618 (0.1) 1.618 (0.1)

0.9472

    



When

A

B

x(0,0)=(1, 1)
-1

x(0,0)=(1, 1)
x(0,1)=(1.1, 1.1)

0.1

x(0,1)=(1.1, 1.1)

x(0,2)=(1.262, 1.262)

0.2618

x(0,2)=(1.262, 1.262)
-1.592

-1.21

x(0,3)=(1.524, 1.524)

0.5236

x(0,3)=(1.524, 1.524)
-2.321

x(0,4)=(1.947, 1.947)

0.9472

x(0,4)=(1.947, 1.947)
-1.154

The minimum point exists.
(The interval of uncertainty)

0 (1,1),dSearch direction: 0, 4k j 

(vi) Step 6: 

Solution Procedure of SQP Using the Example
- Determination of the Step Size Using
the Golden Section Search Method (5/6)
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The value of the                 is found at which the 
penalty function is minimized 
in the interval between        and        .

(1) (0) (0)
0 (1,1) 0.732 (1,1) (1.732,1.732)      x x d

(0,2)x (0,4)x

 (1)f x  1.732,1.732 3f  

0 0.732 

0)(

0)(

00.1
6

1

6

1
)(

23

12

2
2

2
11






xg

xg

xxg

x

x

x

21
2
2

2
1 3)( xxxxf x

BA

1 2 3 4

1

2

3

4

x1

x2

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

f = -10

f = -3

0.0 



A

B

x(0,0)=(1, 1)
-1

x(0,0)=(1, 1)
x(0,1)=(1.1, 1.1)

0.1

x(0,1)=(1.1, 1.1)

x(0,2)=(1.262, 1.262)

0.2618

x(0,2)=(1.262, 1.262)
-1.592

-1.21

x(0,3)=(1.524, 1.524)

0.5236

x(0,3)=(1.524, 1.524)
-2.321

x(0,4)=(1.947, 1.947)

0.9472

-1.154

(vi) Step 6: 

Solution Procedure of SQP Using the Example
- Determination of the Step Size Using
the Golden Section Search Method (6/6)

x(0,62)=(1.732, 1.732)
-3.000

0.732

x(0,4)=(1.947, 1.947)

The minimum point exists.
(The interval of uncertainty)
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(1)

1 5
1 1

1
2

1
3

1 5
1

1.732,1.732 2.999824

1.732,1.732 5.866 10

1.732

1.732

max{0; 5.866 10 , 1.732, 1.732} 0

f f

g g

g

g

V V





  

   

 

 

      

x

x

x

x

x

(2) Iteration 2 (k = 1)

(i) Step 1: Calculate maximum constraint violation of  
all the constraints. 

From the previous stage,

)732.1,732.1()1( x

)1,0(),0,1(),577.0,577.0(),()(

)732.1,732.1()32,32()(

3223
1

13
1)1(

1

1221
)1(





ggxxg

xxxxf

x

x

And,

 Constraint is satisfied.

 Constraint is satisfied.

 Constraint is satisfied.

0)(

0)(

00.1
6

1

6

1
)(

23

12

2
2

2
11






xg

xg

xxg

x

x

x

Minimize

Subject to

21
2
2

2
1 3)( xxxxf x

Solution Procedure of SQP Using the Example
- Determination of the Search Direction (1/3) [Iteration 2]
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(ii&iii) Step 2&3: Define and solve the QP problem to determine the search direction (d(1)).

Quadratic Programming Problem

Minimize

Subject to

)(5.0)732.1732.1( 2
2

2
121 ddddf 

732.1

732.1

10866.5577.0577.0

2

1

5
21




 

d

d

dd

Constrained Optimal Design Problem
(Original problem)

0)(

0)(

00.1
6

1

6

1
)(

13

12

2
2

2
11






xg

xg

xxg

x

x

x

Minimize

Subject to

21
2
2

2
1 3)( xxxxf x

)732.1(

)732.1(

]10866.5)(577.0[

)(5.0)732.1732.1(

2
323

2
212

2
1

5
211

2
2

2
121

sdu

sdu

sddu

ddddL










Lagrange function Kuhn-Tucker necessary condition:





(1)
1 2

5

5

(1)
1 2 3

(1)
1 2 3

( , )

(5.081 10 ,

5.081 10 )

( , , )

(3,0,0)

( , , )

(0, 1.316, 1.316)

d d

u u u

s s s







 









d

u

s

The search direction is

0sud  ),,(L

732.1

,732.1

22

11




xd

xd
where,

 

1

2

1

2

3

1 1 2

2 1 3

6 2
1 2 1

2
1 2

2
2 3

1.732 0.577 0

1.732 0.577 0

0.577 5.866 10 0

1.732 0

1.732 0

0, 0, 1,2,3
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d

L
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L
u
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u
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u

L
i is

d u u

d u u

d d s

d s

d s

u s u i



















     

     

     

    

    

   

Quadratic programming problem
- Objective function: quadratic form
- Constraint: linear form

Solution Procedure of SQP Using the Example
- Determination of the Search Direction (2/3)



)1,0(,732.1)732.1,732.1(

)0,1(,732.1)732.1,732.1(

)577.0,577.0(,10866.5)732.1,732.1(

)732.1,732.1(,3)732.1,732.1(

33

22

1
5

1









gg

gg

gg

ff

* The search direction also can be 
determined using the Simplex method.
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(iv) Step 4: Check for the following stopping criteria.

The stopping criteria is 
satisfied.

    )001.0(10186.710081.510081.5

)10081.5,10081.5(),(

2
52525)1(

55
21

)1(









d

d dd

(v) Step 5: Stop the iteration.

The candidate minimum solution: 3)(),3,3( **  xx f

where the Lagrange multiplier are:
* (3,0,0),u * (0, 1.316, 1.316)s

Quadratic programming problem
- Objective function: quadratic form
- Constraint: linear form

Solution Procedure of SQP Using the Example
- Determination of the Search Direction (3/3)
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Improved
design point

Current
design point

Summary of Sequential Quadratic Programming (SQP)

Minimize ) ,  , ,()( 21 nxxxff x

,...,pihi 1   ,0)( xSubject to

,...,migi 1   ,0)( x

Equality constraints

Inequality constraints

Optimization Problem

( 1) ( ) ( )k k k
k

   x x d

The improved design point is determined as follows:

Step size calculated by one dimensional search method
(ex. Golden section search method)

Search direction obtained from the QP problem

Pshenichny’s descent function:
( ) ( ) ( )( ) ( ) ( )k k k

kf R V   x x x
V(x(k)) is either the maximum constraint violation of all the constraints or zero.
V(x(k)) is nonnegative. If all the constraints are satisfied, the value of the V(x(k)) is zero.

},,,;,,,;0max{)( 2121
)(

mp
k ggghhhV x

( ) ( )
0

1 1

max , ( )
p m

k k
k k i i

i i

R R r v u
 

 
   

 
 
: Summation of all the Lagrange multipliers

Rk is a positive number called the penalty parameter (initially specified by the user).

(k is the iteration number how many times the QP problem is defined.)

the penalty function is constructed by adding a penalty for possible constraint violations to 
the current value of the objective function
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6.5 Determine the Search Direction of 
the Quadratic Programming Problem 

by Using the Simplex Method

98
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Solve the QP problem to determine the search direction (d(0)).

Minimize

Subject to

)(5.0)( 2
2

2
121 ddddf 

1

1

2

1

3
2

23
1

13
1






d

d

dd

)1(

)1(

])2([

)(5.0)(

2
323

2
212

2
1213

1
1

2
2

2
121

sdu

sdu

sddu

ddddL








Lagrange function Kuhn-Tucker necessary condition
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Minimize

Subject to

21
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2
1 3)( xxxxf x

Constrained Optimal Design Problem
(Original problem)

Quadratic Programming Problem

6 d1

d2

1 2 3 4 5-1-2

-1

-2

1

2

3

4

5

6

8.0

5.0

2.0
1.0

0.1

-0.8

A B

C

D

d1=-1

d2=-1
d1+d2=2

f

Graphical Representation

Quadratic programming problem
- Objective function: quadratic form
- Constraint: linear form

Formulation of the Quadratic Programming Problem (1/5)
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Kuhn-Tucker necessary condition

Replace si
2 with si′

Kuhn-Tucker necessary condition
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2

1

2

3

1
1 1 23

1
2 1 33

21
1 2 13
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Multiply the both side of equations by si

2 0, 0, 1, 2,3i i iu s u i  

Kuhn-Tucker necessary condition
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Represent si′ to
si for the 
convenience
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Minimize

Subject to

)(5.0)( 2
2

2
121 ddddf 

1

1

2

1

3
2

23
1

13
1






d

d

dd

Quadratic Programming Problem

2 0i is s 

Formulation of the Quadratic Programming Problem (2/5)
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Kuhn-Tucker necessary condition
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1 1 23
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Minimize

Subject to

)(5.0)( 2
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2
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Matrix form

where,
































































1

1,
10

01

,
10

01
,

1

1
,

3
2

)13(
3
1

3
1

)32(

)22()12(
2

1
)12(

bA

Hcd
d

d

(3 2) (2 1) (3 1)
T

  A d b

Minimize

Subject to

)12()22()21()12()21(
2

1
  dHddc TTf

How can we express the Kuhn-
Tucker necessary condition in   
matrix form (d, c, H, A, b)?

Assume that          is equal to        .(2 2)H (2 2)I

Formulation of the Quadratic Programming Problem (3/5)

Quadratic Programming Problem
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Matrix form

Kuhn-Tucker necessary condition
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Formulation of the Quadratic Programming
Problem (4/5)

102
Topics in Ship Design Automation, Fall 2016, Myung-Il Roh




























































)13(

)12(

)13(

)13(

)12(

)12(

)33()33()23()23(

)32()32()22()22(

b

c

s

u

d

d

I0AA

0AHH
TT

where,

































1000001010

0100000101

001000

000101010

000010101

3
1

3
1

3
1

3
1

3
1

3
1

)105(B

   1111, 3
2

)51(3213212121)101(  



TT sssuuudddd DX

Kuhn-Tucker necessary condition in Matrix form: 0sudd   ),,,(L

)105( B= )15( D=

)110( X=


































































 









1

1,
10

01
,

10

01
,

1

1
,,

3
2

)13(
3
1

3
1

)32()22()12(

2

1
)12(

2

1
)12( bAHcdd

d

d

d

d

Formulation of the Quadratic Programming Problem (5/5)





  )12()12()12( ddd

In order to use the Simplex method, we decompose into two variables, because the design 
variables d(2×1) are free in sign:
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)15()110()105(   DXB

Kuhn-Tucker necessary condition (matrix form)

 This problem is to find X in the linear programming problem only having the equality 
constraints.

 : Check whether the solution obtained from the linear indeterminate 
equation satisfies the nonlinear indeterminate equation and determine the solution.

0;  1  3i iu s i to 

We want to find.
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Formulation of the Quadratic Programming Problem
to Find the Search Direction by Using the Simplex Method
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1. The problem to solve the Kuhn-Tucker necessary condition is the same with the problem having 
only the equality constraints (Linear Programming problem).
2. To solve the linear indeterminate equation, we introduce the artificial variables, define the 
artificial objective function, and then determine the initial basic feasible solution by using the 
Simplex method.

3. The artificial objective function is defined as follows.
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i
ijj

Dw

BC : Add the elements of the jth column of the matrix B and change the its sign 
(initial relative objective coefficient).

4. Solve the linear programming problem by using the Simplex and check whether the solution 
satisfies the following nonlinear equation.

: Initial value of the artificial objective function 
(summation of the all elements of the matrix D)

)15()15()110()105(   DYXB
Artificial variables

: Check whether the solution obtained from the linear indeterminate equation 
satisfies the nonlinear indeterminate equation and determine the solution.

Determine the Search Direction by Using the Simplex Method
- Iteration 1 (1/6)

Simplex method to solve the quadratic programming problem

0;  1  3i iu s i to 
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Artificial objective 
function

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 -

Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 -

Y3 1/3 1/3 -1/3 -1/3 0 0 0 1 0 0 0 0 1 0 0 2/3 2/3

Y4 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 -

Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 -

A. Obj. -1/3 -1/3 1/3 1/3 -2/3 1 1 -1 -1 -1 0 0 0 0 0 w-14/3 -

1

Sum all the elements of the row and change the its sign (ex. Row 1: -(1+0+1/3-1+0)=-1/3)

Artificial variables

)15()15()110()105(   DYXB 
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Define the artificial objective function for using the Simplex method:
1 1 1 1 2 14

1 2 3 4 5 6 7 8 9 10 1 2 3 4 53 3 3 3 3 3X X X X X X X X X X Y Y Y Y Y              Sum all the rows (1~5):

Express the artificial function as 
w and rearrange:

w
1 1 1 1 2 14

1 2 3 4 5 6 7 8 9 103 3 3 3 3 3X X X X X X X X X X w           

Determine the Search Direction by Using the Simplex Method
- Iteration 1 (2/6)
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 1

Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 -

X8 1/3 1/3 -1/3 -1/3 0 0 0 1 0 0 0 0 1 0 0 2/3 2

X9 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 -

X10 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 -

A. Obj. -1 -1 1 1 -2/3 1 1 0 0 0 0 0 1 1 1 w-2 -

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 -

Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 -

X8 1/3 1/3 -1/3 -1/3 0 0 0 1 0 0 0 0 1 0 0 2/3 -

Y4 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1

Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 -

A. Obj. 0 0 0 0 -2/3 1 1 0 -1 -1 0 0 1 0 0 w-4 -

2

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 -

Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 -

X8 1/3 1/3 -1/3 -1/3 0 0 0 1 0 0 0 0 1 0 0 2/3 -

X9 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 -

Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1

A. Obj. -1 0 1 0 -2/3 1 1 0 0 -1 0 0 1 1 0 w-3 -

3

4

Determine the Search Direction by Using the Simplex Method
- Iteration 1 (3/6)
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

X1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 -

Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 1

X8 0 1/3 0 -1/3 -1/9 1/3 0 1 0 0 -1/3 0 1 0 0 1/3 1

X9 0 0 0 0 1/3 -1 0 0 1 0 1 0 0 1 0 2 -

X10 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 -

A. Obj. 0 -1 0 1 -1/3 0 1 0 0 0 1 0 1 1 1 w-1 -

5

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

X1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 -

X2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 -

X8 0 0 0 0 -2/9 1/3 1/3 1 0 0 -1/3 -1/3 1 0 0 0 -

X9 0 0 0 0 1/3 -1 0 0 1 0 1 0 0 1 0 2 -

X10 0 0 0 0 1/3 0 -1 0 0 1 0 1 0 0 1 2 -

A. Obj. 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 w-0 -

6

Since the value of the objective 
function becomes zero, the initial 
basic feasible solution is obtained.

Determine the Search Direction by Using the Simplex Method
- Iteration 1 (4/6)

108
Topics in Ship Design Automation, Fall 2016, Myung-Il Roh

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

X1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 -

X2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 -

X8 0 0 0 0 -2/9 1/3 1/3 1 0 0 -1/3 -1/3 1 0 0 0 -

X9 0 0 0 0 1/3 -1 0 0 1 0 1 0 0 1 0 2 -

X10 0 0 0 0 1/3 0 -1 0 0 1 0 1 0 0 1 2 -

A. Obj. 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 w-0 -

6

Since the value of the objective function 
becomes zero, the initial basic feasible 
solution is obtained.

So, the optimal solution is                                                                  .2,0,0,1 32132121  sssuuudd
This solution satisfies the nonlinear indeterminate equation (                                          )01  1;0,7  5;03 toiXtoiXX iii 

 3213212121)101( sssuuuddddT 
 X

 Caution: In the Pivot step, if the smallest (i.e., the most negative) coefficient of the artificial objective
function or the smallest positive ratio “bi/ai” appears more than one time, the initial basic feasible solution
can be changed depending on the selection of the pivot element in the pivot procedure.

 We have to check the solution until the nonlinear indeterminate equation (ui  si = 0) are satisfied.

1 1,X  2 1,X  8 0,X  9 2,X  10 2X 
Basic solution:

Nonbasic solution:

3 4 5 6 7 0X X X X X    

Determine the Search Direction by Using the Simplex Method
- Iteration 1 (5/6)
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6 d1

d2

1 2 3 4 5-1-2

-1

-2

1

2

3

4

5

6

8.0

5.0

2.0
1.0

0.1

-0.8

A B

C

D

d1=-1

d2=-1
d1+d2=2

f
This example is graphically represented in the right side.

1 0s 
However, fortunately, the optimal solution is on
the linearized inequality constraint (g1(x), d1+d2=2).

0)(
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Minimize

Subject to
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2

2
1 3)( xxxxf x

The optimal solution for this problem is                                                                  .
Why are the values of u1 and s1 are zero at the same time?

2,0,0,1 32132121  sssuuudd

Minimize

Subject to

)(5.0)( 2
2

2
121 ddddf 

1

1

2

1

3
2

23
1

13
1






d

d

dd

Quadratic Programming Problem

Optimal solution

2 3 0u u 
The optimal solution is in the region satisfying the inequality constraints 
of d1 = -1 > 0, d2 = -1 > 0 which are inactive.

The optimal solution is on the inequality constraint (g1(x)) and is equal to the 
optimal solution of the objective function to be approximated to the second 
order. Therefore, although we do not consider the inequality constraint g1(x), 
the optimal solution of QP problem is not changed. That is, g1(x) does not 
affect the optimal solution of this problem.

1 0u 

Determine the Search Direction by Using the Simplex Method
- Iteration 1 (6/6)
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1

( , , , ) ( ) ( ( ) )i i i
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L f u g s


  x v u s x x

Zero at optimum
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The value of the                 is found at which the 
penalty function is minimized 
in the interval between        and        .

(1) (0) (0)
0 (1,1) 0.732 (1,1) (1.732,1.732)      x x d

(0,2)x (0,4)x

 (1)f x  1.732,1.732 3f  

0 0.732 

0)(
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x

x
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21
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1 3)( xxxxf x

BA

1 2 3 4

1

2

3

4

x1

x2

g2 = 0

g3 = 0

g1 = x1
2 + x2

2 - 6.0 = 0

)3,3(* x

f = -10

f = -3

0.0 



A

B

x(0,0)=(1, 1)
-1

x(0,0)=(1, 1)
x(0,1)=(1.1, 1.1)

0.1

x(0,1)=(1.1, 1.1)

x(0,2)=(1.262, 1.262)

0.2618

x(0,2)=(1.262, 1.262)
-1.592

-1.21

x(0,3)=(1.524, 1.524)

0.5236

x(0,3)=(1.524, 1.524)
-2.321

x(0,4)=(1.947, 1.947)

0.9472

-1.154

Determination of the Step Size Using
the Golden Section Search Method

x(0,62)=(1.732, 1.732)
-3.000

0.732

x(0,4)=(1.947, 1.947)

The minimum point exists.
(The interval of uncertainty)
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Solve the QP problem to determine the search direction (d(0)).

Quadratic Programming Problem

Minimize

Subject to

)(5.0)732.1732.1( 2
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2
121 ddddf 
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Constrained Optimal Design Problem
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Lagrange function Kuhn-Tucker necessary condition:
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1. Multiply the both side by si and 
replace si

2 with si’.

2. Represent si’ to si for the 
convenience.

Quadratic programming problem
- Objective function: quadratic form
- Constraint: linear form

Determine the Search Direction by Using the Simplex Method
- Iteration 2 (1/10)
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(3 2) (2 1) (3 1)
T

  A d b

Minimize

Subject to

Minimize

Subject to

where,

Matrix form
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Quadratic Programming Problem
Kuhn-Tucker necessary condition
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Assume that         is equal to        .(2 2)H (2 2)I

Determine the Search Direction by Using the Simplex Method
- Iteration 2 (2/10)
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Determine the Search Direction by Using the Simplex Method
- Iteration 2 (3/10)

1
(2 1) (2 1) (2 2)

2

(2 3) (3 1)

1.732 1 0
, , ,
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  )12()12()12( ddd

Since the design variables d(n×1) are free in sign, we 
may decompose them as follows for using the 
Simplex method.
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where,

(5 10)

1 0 1 0 0.577 1 0 0 0 0

0 1 0 1 0.577 0 1 0 0 0

0.577 0.577 0.577 0.577 0 0 0 1 0 0

1 0 1 0 0 0 0 0 1 0

0 1 0 1 0 0 0 0 0 1
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Kuhn-Tucker necessary condition: 0sudd   ),,,(L
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d d c H A b

Determine the Search Direction by Using the Simplex Method
- Iteration 2 (4/10)
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)15()110()105(   DXB

Kuhn-Tucker necessary condition (matrix form)

1

2

1

2

1

2

3

1

2

3

1 0 1 0 0.577 1 0 0 0 0 1.732

0 1 0 1 0.577 0 1 0 0 0 1.732

0.577 0.577 0.577 0.577 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 1.732

0 1 0 1 0 0 0 0 0 1 1.732
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Determine the Search Direction by Using the Simplex Method
- Iteration 2 (5/10)

 This problem is to find X in the linear programming problem only having the equality 
constraints.

 : Check whether the solution obtained from the linear indeterminate 
equation satisfies the nonlinear indeterminate equation and determine the solution.

We want to find.

0;  1  3i iu s i to 
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Simplex method to solve the quadratic programming problem

1. The problem to solve the Kuhn-Tucker necessary condition is the same with the problem having 
only the equality constraints (linear programming problem).
2. To solve the linear indeterminate equation, we introduce the artificial variables, define the 
artificial objective function and determine the initial basic feasible solution by using the Simplex 
method.

3. The artificial objective function is defined as follows.
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BC : Add the elements of the jth column of the matrix B and change the its sign 
(initial relative objective coefficient).

4. Solve the linear programming problem by using the Simplex and check whether the solution 
satisfies the following equation.

: Initial value of the artificial objective function 
(summation of the all elements of the matrix D)

)15()15()110()105(   DYXB
Artificial variables

Determine the Search Direction by Using the Simplex Method
- Iteration 2 (6/10)

: Check whether the solution obtained from the linear indeterminate equation 
satisfies the nonlinear indeterminate equation and determine the solution.

0;  1  3i iu s i to 
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

Y1 1 0 -1 0 0.577 -1 0 0 0 0 1 0 0 0 0 1.732 3

Y2 0 1 0 -1 0.577 0 -1 0 0 0 0 1 0 0 0 1.732 3

Y3 0.577 0.577 -0.577 -0.577 0 0 0 1 0 0 0 0 1 0 0 0 -

Y4 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1.732 -

Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1.732 -

A. Obj. -0.577 -0.577 0.577 0.577 -1.154 1 1 -1 -1 -1 0 0 0 0 0 w-6.928 -

1

Sum all the elements of the row and change the its sign (ex. 1 row: -(1+0+1/3-1+0)=-1/3)
Artificial objective 

function

Artificial variables

)15()15()110()105(   DYXB 

1

2

1

2

1

2

3

1

2

3

1 0 1 0 0.577 1 0 0 0 0 1.732

0 1 0 1 0.577 0 1 0 0 0 1.732

0.577 0.577 0.577 0.577 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 1.732

0 1 0 1 0 0 0 0 0 1 1.732

d

d

d

d

u

u

u

s

s

s









 
 
 
 

     
         
      
        
        

 
 
  Define the artificial objective function for using the Simplex method

1 2 3 4 5 6 7 8 9 10 1 2 3 4 50.577 0.577 0.577 0.577 1.154 6.928X X X X X X X X X X Y Y Y Y Y              Sum the all rows (1~5):

Replace the summation of the all 
artificial to w and rearrange:

w

1 2 3 4 5 6 7 8 9 100.577 0.577 0.577 0.577 1.154 6.928X X X X X X X X X X w           

Determine the Search Direction by Using the Simplex Method
- Iteration 2 (7/10)
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

X5 1.732 0.000 -1.732 0.000 1.000 -1.732 0.000 0.000 0.000 0.000 1.732 0.000 0.000 0.000 0.000 3.000 -1.732 

Y2 -1.000 1.000 1.000 -1.000 0.000 1.000 -1.000 0.000 0.000 0.000 -1.000 1.000 0.000 0.000 0.000 0.000 0.000 

Y3 0.577 0.577 -0.577 -0.577 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

Y4 -1.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 1.732 1.732 

Y5 0.000 -1.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 1.732 -

A. Obj. 1.423 -0.577 -1.423 0.577 0.000 -1.000 1.000 -1.000 -1.000 -1.000 2.000 0.000 0.000 0.000 0.000 w-3.464 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

X5 0.000 1.732 0.000 -1.732 1.000 0.000 -1.732 0.000 0.000 0.000 0.000 1.732 0.000 0.000 0.000 3.000 -

X3 -1.000 1.000 1.000 -1.000 0.000 1.000 -1.000 0.000 0.000 0.000 -1.000 1.000 0.000 0.000 0.000 0.000 -

Y3 0.000 1.155 0.000 -1.155 0.000 0.577 -0.577 1.000 0.000 0.000 -0.577 0.577 1.000 0.000 0.000 0.000 -

Y4 0.000 -1.000 0.000 1.000 0.000 -1.000 1.000 0.000 1.000 0.000 1.000 -1.000 0.000 1.000 0.000 1.732 1.732 

X10 0.000 -1.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 1.732 -

A. Obj. 0.000 -0.155 0.000 0.155 0.000 0.423 -0.423 -1.000 -1.000 0.000 0.577 1.423 0.000 0.000 1.000 w-1.732 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

X5 0.000 1.732 0.000 -1.732 1.000 0.000 -1.732 0.000 0.000 0.000 0.000 1.732 0.000 0.000 0.000 3.000 -

X3 -1.000 1.000 1.000 -1.000 0.000 1.000 -1.000 0.000 0.000 0.000 -1.000 1.000 0.000 0.000 0.000 0.000 -

Y3 0.000 1.155 0.000 -1.155 0.000 0.577 -0.577 1.000 0.000 0.000 -0.577 0.577 1.000 0.000 0.000 0.000 -

Y4 0.000 -1.000 0.000 1.000 0.000 -1.000 1.000 0.000 1.000 0.000 1.000 -1.000 0.000 1.000 0.000 1.732 -

Y5 0.000 -1.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 1.732 1.732 

A. Obj. 0.000 0.845 0.000 -0.845 0.000 0.423 -0.423 -1.000 -1.000 -1.000 0.577 1.423 0.000 0.000 0.000 w-3.464 

2

3

4

Determine the Search Direction by Using the Simplex Method
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

X5 0.000 1.732 0.000 -1.732 1.000 0.000 -1.732 0.000 0.000 0.000 0.000 1.732 0.000 0.000 0.000 3.000 1.732 

X3 -1.000 1.000 1.000 -1.000 0.000 1.000 -1.000 0.000 0.000 0.000 -1.000 1.000 0.000 0.000 0.000 0.000 0.000 

Y3 0.000 1.155 0.000 -1.155 0.000 0.577 -0.577 1.000 0.000 0.000 -0.577 0.577 1.000 0.000 0.000 0.000 0.000 

X9 0.000 -1.000 0.000 1.000 0.000 -1.000 1.000 0.000 1.000 0.000 1.000 -1.000 0.000 1.000 0.000 1.732 -1.732 

X10 0.000 -1.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 1.732 -1.732 

A. Obj. 0.000 -1.155 0.000 1.155 0.000 -0.577 0.577 -1.000 0.000 0.000 1.577 0.423 0.000 1.000 1.000 w-0.000 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

X5 0.000 0.000 0.000 0.000 1.000 -0.866 -0.866 -1.500 0.000 0.000 0.866 0.866 -1.500 0.000 0.000 3.000 

X2 0.000 1.000 0.000 -1.000 0.000 0.500 -0.500 0.866 0.000 0.000 -0.500 0.500 0.866 0.000 0.000 0.000 

X1 1.000 0.000 -1.000 0.000 0.000 -0.500 0.500 0.866 0.000 0.000 0.500 -0.500 0.866 0.000 0.000 0.000 

X9 0.000 0.000 0.000 0.000 0.000 -0.500 0.500 0.866 1.000 0.000 0.500 -0.500 0.866 1.000 0.000 1.732 

X10 0.000 0.000 0.000 0.000 0.000 0.500 -0.500 0.866 0.000 1.000 -0.500 0.500 0.866 0.000 1.000 1.732 

A. Obj. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 w-0.000 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

X5 1.732 0.000 -1.732 0.000 1.000 -1.732 0.000 0.000 0.000 0.000 1.732 0.000 0.000 0.000 0.000 3.000 1.732 

X2 -1.000 1.000 1.000 -1.000 0.000 1.000 -1.000 0.000 0.000 0.000 -1.000 1.000 0.000 0.000 0.000 0.000 0.000 

Y3 1.155 0.000 -1.155 0.000 0.000 -0.577 0.577 1.000 0.000 0.000 0.577 -0.577 1.000 0.000 0.000 0.000 0.000 

X9 -1.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 1.732 -1.732 

X10 -1.000 0.000 1.000 0.000 0.000 1.000 -1.000 0.000 0.000 1.000 -1.000 1.000 0.000 0.000 1.000 1.732 -1.732 

A. Obj. -1.155 0.000 1.155 0.000 0.000 0.577 -0.577 -1.000 0.000 0.000 0.423 1.577 0.000 1.000 1.000 w-0.000 

Determine the Search Direction by Using the Simplex Method
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So, the optimal solution is                                                                               .1 2 1 2 3 1 2 30,  3,  0,  0,  1.732d d u u u s s s       
This solution satisfy the nonlinear indeterminate equation (                                            ).01  1;0,7  5;03 toiXtoiXX iii 

 In the Pivot step, if the smallest (i.e., the most negative) coefficient of the artificial objective function or 
the smallest positive ratio “bi/ai” appears more than one time, the initial basic feasible solution can be 
changed by depending on the selection of the pivot element in the pivot procedure.

 We have to find and check the solution until the nonlinear indeterminate equation (ui  si = 0) is satisfied.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai

X5 0.000 0.000 0.000 0.000 1.000 -0.866 -0.866 -1.500 0.000 0.000 0.866 0.866 -1.500 0.000 0.000 3.000 

X2 0.000 1.000 0.000 -1.000 0.000 0.500 -0.500 0.866 0.000 0.000 -0.500 0.500 0.866 0.000 0.000 0.000 

X1 1.000 0.000 -1.000 0.000 0.000 -0.500 0.500 0.866 0.000 0.000 0.500 -0.500 0.866 0.000 0.000 0.000 

X9 0.000 0.000 0.000 0.000 0.000 -0.500 0.500 0.866 1.000 0.000 0.500 -0.500 0.866 1.000 0.000 1.732 

X10 0.000 0.000 0.000 0.000 0.000 0.500 -0.500 0.866 0.000 1.000 -0.500 0.500 0.866 0.000 1.000 1.732 

A. Obj. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 w-0.000 

 3213212121)101( sssuuuddddT 
 X

5 3,X  2 0,X  1 0,X  9 1.732,X  10 1.732X 
Basic solution:

Nonbasic solution:

3 4 6 7 8 0X X X X X    
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6.6 Summary of the Sequential 
Quadratic Programming (SQP)
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: Quadratic objective function

: Linear equality constraints

: Linear inequality constraints

The first-order (linear) Taylor series expansion of the equality constraints

The first-order (linear) Taylor series expansion of the inequality constraints

The second-order Taylor series expansion of the objective function

Formulation of the Quadratic Programming Problem
to Determine the Search Direction
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Trial design point for which the descent condition is checked

Determination of the improved design point x(k+1) by using the one dimensional search method such 
as the Golden section search method (x(k, j) is changed to x(k+1).)

( , ) ( ) ( )
( , )

k j k k
k j x x d  How can we determine the value of the (k,j) to find the improved design point?

Find the improved design point which minimizes the descent function more than the current point 
by changing (k,j). (One dimensional search method, such as the Golden section search method, 
can be used.)

After finding the interval in which the minimum lies, find the minimum point, x, by reducing 
the interval (Golden section search method).

0  2.6185.236 9.472

421q = 0 …

16.326

3

l a u

= = =

The minimum point exists.
(The interval of uncertainty)

)(x

I

l a u 
Upper limitLower limit

The minimum point exists.
(The interval of uncertainty)

b

0.618I 0.382I

)(x

)1( kx

Determination of the Step Size
by Using the Golden Section Search Method
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Minimize

Subject to
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Assumption: H(nn) = I(nn)
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 Since H(nn) = I(nn), the objective function is 
a quadratic form.

 All constraints are linear.
 This problem is called the convex 

programming problem and any local 
optimum solution is also a global optimum 
solution.

Formulation of the Quadratic Programming Problem
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Define the QP problem to determine the search 
direction d(k) and calculate the Lagrange multiplier 

at the given design point x(k).

Solve the QP problem (solution: search direction 
d(k), Lagrange multiplier) by using the Lagrange 
function and Kuhn-Tucker necessary condition.

k = k + 1

Yes

Check for the stopping criteria 
d(k) 2 and the maximum 
constraint violation Vk 1.

Set x* = x(k)

and stop.

Yes

No

Sequential
Quadratic
Programming

Find the improved design point (x(k+1)) to minimize the
descent function along the search direction (d(k)) by
using the one dimensional search method (ex: Golden
section search method)

Flow Diagram of the SQP Method
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Summary of the SQP (CSD) Method (1/2)

 Step 1: Set k = 0. Estimate the initial value for the design variables as 
x(0). Select an appropriate initial value for the penalty parameter R0, 
and two small number 1, 2 that define the permissible constraint 
violations and convergence parameter values, respectively.

 Step 2: At x(k), compute the objective and constraint functions and 
their gradient. Calculate the maximum constraint violation Vk.

 Step 3: Using the objective and constraints function values and their 
gradients, define the QP problem. Solve the QP problem to obtain 
the search direction d(k) (= x(k+1) - x(k)) and Lagrange multiplier v(k) and 
u(k).
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Summary of the SQP (CSD) Method (2/2)

 Step 4: Check for the stopping criteria d(k) 2 and the maximum 
constraint violation Vk 1. If these criteria are satisfied then stop. 
Otherwise continue.

 Step 5: Calculate the sum rk of the Lagrange multiplier. Set R = 
max{Rk, rk}.

 Step 6: Set x(k,j) = x(k) + (k,j)d(k), where  = (k,j) is a proper step size. As 
for the unconstrained problems, the step size can be obtained by 
minimizing the descent function along the search direction d(k). The 
one dimensional search method, such as the Golden section search 
method, can be used to determine the optimum step size.
(If the one dimensional search method is completed, the current 
design point x(k,j) is changed to x(k+1).)

 Step 7: Save the current penalty parameter as Rk = R. Update the 
iteration counter as k = k+1 and go to Step 2.
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Effect of the Starting Point in the SQP Method

The starting point can affect performance 
of the method. 

For example, at some points, the 
Quadratic Programming problem defined 
to determine the search direction may not 
have any solution.
This does not mean that the original 
problem is infeasible. 
The original problem may be highly 
nonlinear, so that the linearized constraints 
may be inconsistent giving infeasible 
Quadratic Programming problem.

This situation can be handled by either 
temporarily deleting the inconsistent 
constraints or starting from another point.


