

Contents
☑ Ch. 1 Introduction to Optimum Design
In Ch. 2 Unconstrained Optimization Method: Gradient Method
In Ch. 3 Unconstrained Optimization Method: Enumerative Method
☑ Ch. 4 Constrained Optimization Method: Penalty Function Method
☑ Ch. 5 Constrained Optimization Method: LP (Linear Programming)
Ch. 6 Constrained Optimization Method: SQP (Sequential
Quadratic Programming)
Image: Ch. 7 Metaheuristic Optimization Method: Genetic Algorithms
Image: Ch. 8 Case Study of Optimal Dimension Design
Ch. 9 Case Study of Optimal Route Design
Image: Ch. 10 Case Study of Optimal Layout Design
Topics in Ship Design Automation. Fall 2016, Myung-II Roh

٦

Stationary Point for Constrained Optimization Problem (2/3)
Given: Minimize $f(x_1, x_2, x_3)$ Subject to $h(x_1, x_2, x_3) = 0$
$df + \lambda \cdot dh = 0$ λ : Undetermined Coefficient 'Lagrange multiplier
This equation can be rearranged as follows.
$\frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \frac{\partial f}{\partial x_3} dx_3 + \lambda \left(\frac{\partial h}{\partial x_1} dx_1 + \frac{\partial h}{\partial x_2} dx_2 + \frac{\partial h}{\partial x_3} dx_3 \right) = 0$
$\left(\frac{\partial f}{\partial x_1} + \lambda \frac{\partial h}{\partial x_1}\right) dx_1 + \left(\frac{\partial f}{\partial x_2} + \lambda \frac{\partial h}{\partial x_2}\right) dx_2 + \left(\frac{\partial f}{\partial x_3} + \lambda \frac{\partial h}{\partial x_3}\right) dx_3 = 0$
Topics in Ship Design Automation, Fall 2016, Myung-II Roh

Г

Stationary Point for	
Constrained Optimization Problem (3/3	$\partial x_1 \partial x_2 \partial x_3$
Given: Minimize $f(x, x, x)$	(2) $dh = \frac{\partial h}{\partial x_1} dx_1 + \frac{\partial h}{\partial x_2} dx_2 + \frac{\partial h}{\partial x_3} dx_3 = 0$
Solution: Minimize $f(x_1, x_2, x_3)$ Subject to $h(x_1, x_2, x_3) = 0$	Because of the equality constraint h , dx_1 , dx_2 , and dx_3 are not independent.
Subject to $h(x_1, x_2, x_3) = 0$	$df + \lambda \cdot dh = 0$
Find: Stationary point (x_1^-, x_2^-, x_3^-) (af ah) (af ah) (af ah) (af ah)	λ : Undetermined Coefficient 'Lagrange multiplier'
$\underbrace{\left[\frac{\partial f}{\partial x_1} + \lambda \frac{\partial n}{\partial x_1}\right]}_{\left[\frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} + \lambda \frac{\partial n}{\partial x_2}\right]} dx_2 + \underbrace{\left[\frac{\partial f}{\partial x_3} + \lambda \frac{\partial n}{\partial x_3}\right]}_{\left[\frac{\partial f}{\partial x_3} + \lambda \frac{\partial n}{\partial x_3}\right]} dx_3 = 0$	
If the dx_1 , dx_2 , and dx_3 were all independent of each other, all ters satisfy the equation. This however, is not the case because of the make the first term to be zero by determining a proper value of satisfied without considering the dx_1 .	rms in the brackets should be zero to e equality constraint <i>h</i> . Let's try to λ , so that the following equation is
$\left(\frac{\partial f}{\partial x_2} + \lambda \frac{\partial h}{\partial x_2}\right) dx_2 + \left(\frac{\partial f}{\partial x_3} + \lambda \frac{\partial h}{\partial x_3}\right) dx_3 = 0$	
Since dx_2 and dx_3 are independent, the terms in the brackets mu	st be zero to satisfy the equation.
$\therefore \left(\frac{\partial f}{\partial x_1} + \lambda \frac{\partial h}{\partial x_1}\right) = 0, \left(\frac{\partial f}{\partial x_2} + \lambda \frac{\partial h}{\partial x_2}\right) = 0, \left(\frac{\partial f}{\partial x_3} + \lambda \frac{\partial h}{\partial x_3}\right) = 0$	
Therefore, the point (x_1, x_2, x_3, λ) that satisfies the following equation	ations is a stationary point.
$\frac{\partial f}{\partial x_1} + \lambda \frac{\partial h}{\partial x_1} = 0, \frac{\partial f}{\partial x_2} + \lambda \frac{\partial h}{\partial x_2} = 0$ 4 Unknown variables: (x_1, x_2, x_3, λ) 4 Equations	
$\frac{c_{y}}{\partial x_{3}} + \lambda \frac{\partial x_{1}}{\partial x_{3}} = 0, h(x_{1}, x_{2}, x_{3}) = 0$ There exists an unique solution.	20

[Example] Solving No Problem by Using the	nlinear Constraine Lagrange Multip	ed Optimization lier (4/4)
	Equation (1) × x_1 -8 $x_1x_2x_3$ - Equation (2) × x_2 -8 $x_1x_2x_3$ - Equation (3) × x_3 -8 $x_1x_2x_3$ - Substitute these into the	$+\lambda 2x_1^2 = 0$ $+\lambda 2x_2^2 = 0$ $+\lambda 2x_2^2 = 0$ $x_1^2 = \frac{4x_1x_2x_3}{\lambda}$ $x_2^2 = \frac{4x_1x_2x_3}{\lambda}$ $x_3^2 = \frac{4x_1x_2x_3}{\lambda}$ equation ((a))
$\frac{4x_{1}x_{2}x_{3}}{\lambda} + \frac{4x_{1}x_{2}x_{3}}{\lambda} + \frac{4x_{1}x_{2}x_{3}}{\lambda} - c^{2} = 0$ $\frac{12x_{1}x_{2}x_{3}}{\lambda} = c^{2}$ $\frac{12x_{1}x_{2}x_{3}}{c^{2}} = \lambda \dots \text{(S)}$ Substitute the equation (S) into the equation (D) $-8x_{2}x_{3} + \frac{12x_{1}x_{2}x_{3}}{c^{2}} 2x_{1} = 0$	$-8x_2x_3 + \frac{24x_1^2x_2x_3}{c^2} = 0$ $-8x_2x_3\left(1 - \frac{3x_1^2}{c^2}\right) = 0$ If x_2 or x_3 are zero 0, the volume of the rectangular solid is zero and the solution is trivial. Therefore, $1 - \frac{3x_1^2}{c^2} = 0$ $\frac{3x_1^2}{c^2} = 1$	$x_{1}^{2} = \frac{c^{2}}{3}$ $x_{1} = \pm \frac{c}{\sqrt{3}}$ Because x_{1} is a length, it must be positive. x_{2} and x_{3} are found in the same way. $x_{1} = \frac{c}{\sqrt{3}}, x_{2} = \frac{c}{\sqrt{3}}, x_{3} = \frac{c}{\sqrt{3}}$ So, the maximum volume is $8x_{1}x_{2}x_{3} = \frac{8c^{3}}{3\sqrt{3}}$

Necessary Condition of Candidate Local Optimal Solution for the Inequality Constrained Problem (2/2)

Lagrange function for the inequality constrained problem

$$L(\mathbf{x}, \mathbf{u}, \mathbf{s}) = f(\mathbf{x}) + \sum_{i=1}^{\infty} u_i(g_i(\mathbf{x}) + s_i^2) = f(\mathbf{x}) + \mathbf{u}^T(\mathbf{g}(\mathbf{x}) + \mathbf{s}^2)$$

where, u_i are the Lagrange multiplier for the inequality constraints and have to be nonnegative. s_i are the slack variables to transform the inequality constraints to the equality constraints.

The necessary condition of the candidate local optimal solution for the inequality constrained problem

$$\nabla L(\mathbf{x}^*, \mathbf{u}^*, \mathbf{s}^*) = \mathbf{0}$$

$$\blacksquare$$

$$\frac{\partial L}{\partial x_j} \equiv \frac{\partial f}{\partial x_j} + \sum_{i=1}^m u_i^* \frac{\partial g_i}{\partial x_j} = 0, \quad j = 1, \dots, m$$

$$\frac{\partial L}{\partial u_i} \equiv g_i(\mathbf{x}^*) + s_i^{*2} = 0, \quad i = 1, \dots, m$$

$$\frac{\partial L}{\partial s_i} \equiv u_i^* s_i^* = 0, \quad i = 1, \dots, m$$

$$u_i^* \ge 0, \quad i = 1, \dots, m$$

38

Optimization	Minimize $f(\mathbf{x})$	$\mathbf{x}) = f(x_1, x_2, \cdots, x_n)$
<u>Problem</u>	Subject to $h_i(x)$	$\mathbf{x} = 0, i = 1, \dots, p$ Equality constraints
	$g_i(z)$	$\mathbf{x} \le 0, i = 1,, m$ Inequality constraints
Definition of	$L(\mathbf{x}, \mathbf{v}, \mathbf{u}, \mathbf{s}) = f$	$\hat{\mathbf{r}}(\mathbf{x}) + \sum_{i=1}^{p} v_i h_i(\mathbf{x}) + \sum_{i=1}^{m} u_i(g_i(\mathbf{x}) + s_i^2)$
the Lagrange funct	ion	i=1 $i=1$
	= f	$h'(x) + v' h(x) + u' (g(x) + s^2)$
	v _i are the Lagrange m	nultipliers for the equality constraints and are free in sign.
	s, are the slack variab	les to transform the inequality constraints and have to be nonnegative.
Kuhn-Tucker neces	ony condition: Γ	
INVESTIGATION OF THE COST	arv condition. v	$7L(\mathbf{x} \mathbf{v} \mathbf{u} \mathbf{s}) = 0$
$\frac{\partial L}{\partial x_j} \equiv \frac{\partial f}{\partial x_j} + \sum_{i=1}^p v_i^* \frac{\partial h}{\partial x_i}$	$\frac{h_i}{x_j} + \sum_{i=1}^m u_i^* \frac{\partial g_i}{\partial x_j} = 0,$	$7L(\mathbf{x}, \mathbf{v}, \mathbf{u}, \mathbf{s}) = 0$ $j = 1, \dots, n$
$\frac{\partial L}{\partial x_j} \equiv \frac{\partial f}{\partial x_j} + \sum_{i=1}^p v_i^* \frac{\partial i}{\partial x_i}$ $\frac{\partial L}{\partial v_i} \equiv h_i(\mathbf{x}^*) = 0, i$	$ \sum_{i=1}^{h_i} + \sum_{i=1}^{m} u_i^* \frac{\partial g_i}{\partial x_j} = 0, $ $ i = 1, \dots, p $	$7L(\mathbf{x}, \mathbf{v}, \mathbf{u}, \mathbf{s}) = 0$ $j = 1, \dots, n$ If \mathbf{x}^* is the candidate local minimum point, the equations from the Kuhn-Tucker necessary condition have to be satisfied.

ſ

[Example] Nonlinear Constrained O - Optimum Solution for the Case th	Description Problem #3 hat x _i are "Nonnegative" (4/4) Constant: linear form
Lagrangian function $L(\mathbf{x}, \mathbf{u}, \mathbf{s}, \boldsymbol{\zeta}, \boldsymbol{\delta}) = x_1^2 + x_2^2 - 2x_1 - 2x_2 + 2$	Case #1: $s_1=s_2=\zeta_1=\zeta_2=0$, (Point A) $x_1=x_2=\frac{4}{3}, u_1=u_2=\frac{2}{9}$ Case #9: $u_1=s_2=\zeta_2=x_1=0$, (Point F) $x_1=0, x_2=2, u_2=1$, $x_1=0, x_2=2, u_2=1$, $x_2=-2, u_2=1$, $x_1=0, x_2=2, u_2=1$, $x_2=-2, u_2=1$, $x_2=-2, u_2=1$, $x_2=-2, u_2=1$, $x_1=0, x_2=2, u_2=1$, $x_2=-2, u_2=1$
$ \begin{aligned} +u_1(-2x_1 - x_2 + 4 + s_1^2) \\ +u_2(-x_1 - 2x_2 + 4 + s_2^2) \\ +\zeta_1(-x_1 + \delta_1^2) + \zeta_2(-x_2 + \delta_2^2) \end{aligned} $	Case #2: $u_1 - s_2 - \epsilon_1 - 2$, $u_1 - s_2 - 2$, $u_1 - 1$, $u_1 - s_2 - 2$, $u_1 - 1$, $u_2 - 1$, $u_1 - 1$, u
$g_{I} = 0$ Minimum at Point A $x^{*} = (\frac{4}{3}, \frac{4}{3}), f(x^{*}) = \frac{2}{9}$	$\begin{aligned} x_1 &= x_2 = 1, s_1^2 = s_2^2 = -1 \\ \mathbf{x}_1 &= x_2 = 0, s_1^2 = s_2^2 = -4, \\ \zeta_1 &= \zeta_2 = -2 \end{aligned} \qquad \begin{aligned} x_1 &= x_2 = 0, s_1^2 = s_2^2 = -4, \\ \zeta_1 &= \zeta_2 = -2 \end{aligned} \qquad \begin{aligned} x_1 &= x_2 = 0, s_1^2 = s_2^2 = -4, \\ \zeta_1 &= \zeta_2 = -2 \end{aligned} \qquad \begin{aligned} x_1 &= x_2 = 0, s_1^2 = s_2^2 = -4, \\ z_1 &= x_2 = 0, s_1^2 = s_2^2 = -4, \\ z_1 &= x_2 = 0, s_1^2 = s_2^2 = -4, \\ z_1 &= x_2 = 0, s_1^2 = s_2^2 = s_2^$
F z_2 B B C $g_2 = 0$ $g_2 = 0$	$\begin{array}{l} \begin{array}{lllllllllllllllllllllllllllllllll$
1 -1.52 AK 20 13 11 AK	$x_1 = 1, x_2 = 0, s_1^2 = -2,$ It has to be nonnegative. $s_2^2 = -3, \zeta_2 = -2$ 48

[Summary] Solution of QP Problem Using the Kuhn-Tucker Necessary Condition Minimize $f(\mathbf{x}) = x_1^2 + x_2^2 - 2x_1 - 2x_2 + 2$ Subject to $-2x_1 - x_2 \le -4$ $-2x_1 - x_2 + 4 + s_1^2 = 0$ $-x_1 - 2x_2 \le -4$ $-x_1 - 2x_2 + 4 + s_2^2 = 0$ $x_1 \ge 0, x_2 \ge 0$ $-x_1 + \delta_1^2 = 0, -x_2 + \delta_2^2 = 0$ Lagrange function $L(\mathbf{x}, \mathbf{u}, \mathbf{s}, \zeta, \delta) = x_1^2 + x_2^2 - 2x_1 - 2x_2 + 2$ $+u_1(-2x_1 - x_2 + 4 + s_1^2) + u_2(-x_1 - 2x_2 + 4 + s_2^2)$ $+\zeta_1(-x_1 + \delta_1^2) + \zeta_2(-x_2 + \delta_2^2)$ where, $u_i, \zeta_i \ge 0$ Kuhn-Tucker necessary condition: $\nabla L(\mathbf{x}, \mathbf{u}, \mathbf{s}, \zeta, \delta) = 0$ $\frac{\partial L}{\partial x_1} = -2 + 2x_1 - 2u_1 - u_2 - \zeta_1 = 0, \quad \frac{\partial L}{\partial x_2} = -2 + 2x_2 - u_1 - 2u_2 - \zeta_2 = 0$ $\frac{\partial L}{\partial u_1} = -2x_1 - x_2 + 4 + s_1^2 = 0, \quad \frac{\partial L}{\partial u_2} = -x_1 - 2x_2 + 4 + s_2^2 = 0$ $\frac{\partial L}{\partial z_1} = 2u_1s_1 = 0, \quad \frac{\partial L}{\partial s_2} = 2u_2s_2 = 0$ $\frac{\partial L}{\partial \delta_1} = 2\zeta_1\delta_1 = 0, \quad \frac{\partial L}{\partial \delta_2} = 2\zeta_2\delta_2 = 0$ $\frac{\partial L}{\partial \zeta_2} = -x_2 + \delta_2^2 = 0$ where, $u_1, \zeta_1, \delta_1 \ge 0$

Solution Procedure of Quadratic Programming (QP) Problem - Approximate the Original Problem as a QP Problem

 $\begin{aligned} \text{Minimize} \quad f(\mathbf{x} + \Delta \mathbf{x}) &\cong f(\mathbf{x}) + \nabla f^{T}(\mathbf{x}) \Delta \mathbf{x} + 0.5 \Delta \mathbf{x}^{T} \mathbf{H} \Delta \mathbf{x} \\ \text{The second-order Taylor series expansion of the objective function} \\ \text{Subject to} \quad h_{j}(\mathbf{x} + \Delta \mathbf{x}) &\cong h_{j}(\mathbf{x}) + \nabla h_{j}^{T}(\mathbf{x}) \Delta \mathbf{x} = 0; \ j = 1 \ to \ p \\ \text{The first-order(linear) Taylor series expansion of the equality constraints} \\ g_{j}(\mathbf{x} + \Delta \mathbf{x}) &\cong g_{j}(\mathbf{x}) + \nabla g_{j}^{T}(\mathbf{x}) \Delta \mathbf{x} \leq 0; \ j = 1 \ to \ m \end{aligned} \\ \text{The first-order(linear) Taylor series expansion of the inequality constraints} \\ \text{Define:} \quad \bar{f} = f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x}), \ e_{j} = -h_{j}(\mathbf{x}), \ b_{j} = -g_{j}(\mathbf{x}), \\ c_{i} = \partial f(\mathbf{x}) / \partial x_{i}, \ n_{ij} = \partial h_{j}(\mathbf{x}) / \partial x_{i}, \ a_{ij} = \partial g_{j}(\mathbf{x}) / \partial x_{i}, \\ d_{i} = \Delta x_{i} \end{aligned} \\ \textbf{Minimize} \quad \bar{f} = \mathbf{c}^{T}_{(1 \times n)} \mathbf{d}_{(n \times 1)} + \frac{1}{2} \mathbf{d}^{T}_{(1 \times n)} \mathbf{H}_{(n \times n)} \mathbf{d}_{(n \times 1)} : \textbf{Quadratic objective function} \\ \textbf{Subject to} \quad \mathbf{N}^{T}_{(p \times n)} \mathbf{d}_{(n \times 1)} = \mathbf{e}_{(p \times 1)} : \textbf{Linear equality constraints} \\ \mathbf{A}^{T}_{(m \times n)} \mathbf{d}_{(n \times 1)} \leq \mathbf{b}_{(m \times 1)} : \textbf{Linear inequality constraints} \end{aligned}$

Solution Procedure of Quadratic Programming (QP) Problem - Construction of Lagrange Function Minimize $\bar{f} = \mathbf{c}^{T}_{(1\times n)}\mathbf{d}_{(n\times 1)} + \frac{1}{2}\mathbf{d}^{T}_{(1\times n)}\mathbf{H}_{(n\times n)}\mathbf{d}_{(n\times 1)}$ Subject to $\mathbf{N}^{T}_{(p\times n)}\mathbf{d}_{(n\times 1)} = \mathbf{e}_{(p\times 1)}$ $\mathbf{A}^{T}_{(m\times n)}\mathbf{d}_{(n\times 1)} \leq \mathbf{b}_{(m\times 1)} \Rightarrow \mathbf{A}^{T}_{(m\times n)}\mathbf{d}_{(n\times 1)} - \mathbf{b}_{(m\times 1)} + \mathbf{s}_{(m\times 1)}^{2} = \mathbf{0}$ Lagrange Function $\mathcal{L} = \mathbf{c}^{T}_{(1\times n)}\mathbf{d}_{(n\times 1)} + \frac{1}{2}\mathbf{d}^{T}_{(1\times n)}\mathbf{H}_{(n\times n)}\mathbf{d}_{(n\times 1)}$ $+ \mathbf{u}^{T}_{(1\times m)}(\mathbf{A}^{T}_{(m\times n)}\mathbf{d}_{(n\times 1)} + \mathbf{s}_{(m\times 1)}^{2} - \mathbf{b}_{(m\times 1)})$ $+ \mathbf{v}^{T}_{(1\times p)}(\mathbf{N}^{T}_{(p\times n)}\mathbf{d}_{(n\times 1)} - \mathbf{e}_{(p\times 1)})$

Solution Proce - Method 1: D	edure of Quadr irect Solving tl	atic Programming (QP) Problem ne Eqs. from the K-T Conditions
Optimization problem	$\begin{array}{ll} \text{Minimize} & f(\mathbf{x}) = f(x_1) \\ \text{Subject to} & h_i(\mathbf{x}) = 0, i \\ & g_i(\mathbf{x}) \leq 0, \end{array}$	(x_2, \cdots, x_n) = 1,,p Equality constraint i = 1,,m Inequality constraint
Definition of Lagrange function	$L(\mathbf{x}, \mathbf{v}, \mathbf{u}, \mathbf{s}) = f(\mathbf{x}) + \sum_{i=1}^{p} v_i$ are the Lagrange multipliers u_i are the Lagrange multiplier s_i are the slack variables to tra	$v_i h_i(\mathbf{x}) + \sum_{\substack{i=1\\i=1}}^m u_i(g_i(\mathbf{x}) + s_i^2)$ for the equality constraints and are free in sign. for the inequality constraints and have to be nonnegative. nsform the inequality constraints to the equality constraints.
Kuhn-Tucker necessa	ry condition : $\nabla L(\mathbf{x}, \mathbf{v},$	$(\mathbf{u},\mathbf{s})=0$
$\frac{\partial L}{\partial x_j} = \frac{\partial f}{\partial x_j} + \sum_{i=1}^{p} v_i^* \frac{\partial h_i}{\partial x_j} + \sum_{i=1}^{m} u_i$ $\frac{\partial L}{\partial v_i} = h_i(\mathbf{x}^*) = 0, i = 1, \dots$ $\frac{\partial L}{\partial u_i} = g_i(\mathbf{x}^*) + s_i^{*2} = 0, i = 1$	$\int_{a}^{b} \frac{\partial g_{i}}{\partial x_{j}} = 0, j = 1, \dots, n$ $, p$ $1, \dots, m$	Method 1: - Find the solutions which satisfy the nonlinear indeterminate equations. - Check whether the solutions satisfy the linear indeterminate equations and determine the solution of this problem. - Human can find the solution of this problem easily by using this method.
Linear indeterminate economic linear indeterminate economic linear indeterminate economic linear indeterminate $u_i^* \ge 0, i = 1, \dots, m$	e equations	
Topics in Ship Design Automation, Fall 2016	i, Myung-Il Roh	

32

Summary of Sequential Linear Programming (SLP) Minimize $f(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong f(\mathbf{x}^{(k)}) + \nabla f^T(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)}$ The first-order(linear) Taylor series expansion of the objective function Subject to $h_j(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong h_j(\mathbf{x}^{(k)}) + \nabla h_j^T(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} = 0; j = 1 to p$ The first-order (linear) Taylor series expansion of the equality constraints $g_j(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong g_j(\mathbf{x}^{(k)}) + \nabla g_j^T(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} \leq 0; j = 1 to m$ The first-order (linear) Taylor series expansion of the inequality constraints $g_j(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong g_j(\mathbf{x}^{(k)}) + \nabla g_j^T(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} \leq 0; j = 1 to m$ The first-order (linear) Taylor series expansion of the inequality constraints \mathbf{D} Define: $\bar{f} = f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x}), e_j = -h_j(\mathbf{x}), b_j = -g_j(\mathbf{x}), e_i = \partial f(\mathbf{x})/\partial x_i, a_{ij} = \partial g_j(\mathbf{x})/\partial x_i, d_i = \Delta x_i$ Minimize $\bar{f} = \sum_{i=1}^n c_i d_i$ Subject to $\sum_{i=1}^n n_{ij} d_i = e_j; j = 1$ to p $\sum_{i=1}^n a_{ij} d_i \leq b_j; j = 1$ to mwhere, $d_{il} \leq d_{ii} \leq d_{iii} (\Delta x_{il}^{(k)} \leq \Delta x_{il}^{(k)})$ The first-order \mathbf{x}_{iii} (the analysis of the objective function) \mathbf{x}_i to an be solved by using the Simplex method.

Formulation of the Quadratic Programming Problem to Determine the Search Direction $\begin{array}{l} \textit{Minimize } f(\mathbf{x} + \Delta \mathbf{x}) \cong f(\mathbf{x}) + \nabla f^{T}(\mathbf{x})\Delta \mathbf{x} + 0.5\Delta \mathbf{x}^{T}\mathbf{H}\Delta \mathbf{x} \\ \text{The second-order Taylor series expansion of the objective function} \\ \textit{Subject to } h_{j}(\mathbf{x} + \Delta \mathbf{x}) \cong h_{j}(\mathbf{x}) + \nabla h_{j}^{T}(\mathbf{x})\Delta \mathbf{x} = 0; \ j = 1 \ to \ p \\ \text{The first-order (linear) Taylor series expansion of the equality constraints} \\ g_{j}(\mathbf{x} + \Delta \mathbf{x}) \cong g_{j}(\mathbf{x}) + \nabla g_{j}^{T}(\mathbf{x})\Delta \mathbf{x} \leq 0; \ j = 1 \ to \ m \\ \text{The first-order (linear) Taylor series expansion of the inequality constraints} \\ \textbf{Define: } \quad \bar{f} = f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x}), \ e_{j} = -h_{j}(\mathbf{x}), \ b_{j} = -g_{j}(\mathbf{x}), \\ c_{i} = \partial f(\mathbf{x})/\partial x_{i}, \ n_{ij} = \partial h_{j}(\mathbf{x})/\partial x_{i}, \ a_{ij} = \partial g_{j}(\mathbf{x})/\partial x_{i}, \\ d_{i} = \Delta x_{i} \\ \textbf{Minimize } \quad \bar{f} = \mathbf{c}^{T}_{(1 \times n)} \mathbf{d}_{(n \times 1)} + \frac{1}{2} \mathbf{d}^{T}_{(1 \times n)} \mathbf{H}_{(n \times n)} \mathbf{d}_{(n \times 1)} : \textbf{Quadratic objective function} \\ \textbf{Subject to } \mathbf{N}^{T}_{(p \times n)} \mathbf{d}_{(n \times 1)} = \mathbf{e}_{(p \times 1)} : \textbf{Linear equality constraints} \\ \mathbf{A}^{T}_{(m \times n)} \mathbf{d}_{(n \times 1)} \leq \mathbf{b}_{(m \times 1)} : \textbf{Linear inequality constraints} \\ \textbf{Matrix form} \\ \textbf{Subject to } \mathbf{N}^{T}_{(p \times n)} \mathbf{d}_{(n \times 1)} = \mathbf{e}_{(p \times 1)} : \textbf{Linear inequality constraints} \\ \textbf{A}^{T}_{(m \times n)} \mathbf{d}_{(n \times 1)} \leq \mathbf{b}_{(m \times 1)} : \textbf{Linear inequality constraints} \\ \textbf{Matrix form} \\ \textbf{Minimize } \mathbf{N}^{T}_{(p \times n)} \mathbf{d}_{(n \times 1)} = \mathbf{e}_{(p \times 1)} : \textbf{Linear inequality constraints} \\ \textbf{A}^{T}_{(m \times n)} \mathbf{d}_{(n \times 1)} \leq \mathbf{b}_{(m \times 1)} : \textbf{Linear inequality constraints} \\ \textbf{A}^{T}_{(m \times n)} \mathbf{d}_{(n \times 1)} = \mathbf{e}_{(p \times 1)} : \textbf{Linear inequality constraints} \\ \textbf{A}^{T}_{(m \times n)} \mathbf{d}_{(n \times 1)} \leq \mathbf{b}_{(m \times 1)} : \textbf{M}^{T}_{(n \times n)} \mathbf{d}_{(n \times 1)} \\ \textbf{M}^{T}_{(n \times n)} \mathbf{d}_{(n \times 1)} = \mathbf{e}_{(n \times 1)} : \textbf{M}^{T}_{(n \times n)} \mathbf{d}_{(n \times 1)} = \mathbf{e}_{(n \times 1)} \\ \textbf{M}^{T}_{(n \times n)} \mathbf{d}_{(n \times 1)} = \mathbf{e}_{(n \times 1)} : \mathbf{M}^{T}_{(n \times n)} \mathbf{d}_{(n \times 1)} \\ \textbf{M}^{T}_{(n \times n)} \mathbf{d}_{(n \times 1)} = \mathbf{e}_{(n \times 1)} \\ \textbf{M}^{T}_{(n \times n)} \mathbf{d}_{(n \times 1)} = \mathbf{e}_{(n \times 1)$

Difference between Sequential Quadratic Programming (SQP) and **CSD** (Constrained Steepest Descent) Method ☑ Sequential Quadratic Programming (SQP) ■ ① First, we define a quadratic programming problem for the objective function and constraints at the current design point, and find the search direction d^(k). • 2) We define the penalty function by adding a penalty for possible constraint violations to the current value of the objective function, and calculate the step size a_k to minimize the penalty function. For determination of the step size, one dimensional search method, e.g., Golden section search method can be used. And we determine the improved design point. ■ ③ At the improved design point, we go to ①. The method is to find the optimal solution by solving the quadratic programming problem sequentially. ☑ CSD (Constrained Steepest Descent) method This method is a kind of the SQP method. When defining the quadratic programming problem, the Hessian matrix is assumed to be equal to the identity Matrix.

■ This method uses the Pshenichny's penalty function.

opics in Ship Design Automation, Fall 2016, Myung-Il Roh

Solution Procedure of SQP Using the Example - Determination of the Search Direction (4/5) (iii) Step 3: Solve the QP problem to find the search direction (d⁽⁰⁾). **Constrained Optimal Design Problem** Quadratic Programming Problem $\left| 1 \right\rangle$ (Original problem) *Minimize* $\bar{f} = (-d_1 - d_2) + 0.5(d_1^2 + d_2^2)$ **Minimize** $f(\mathbf{x}) = x_1^2 + x_2^2 - 3x_1x_2$ **Subject to** $g_1(\mathbf{x}) = \frac{1}{6}x_1^2 + \frac{1}{6}x_2^2 - 1.0 \le 0$ $f(1,1) = -1, g_1(1,1) = -\frac{2}{3},$ Subject to $\frac{1}{3}d_1 + \frac{1}{3}d_2 \le \frac{2}{3}$
$$\begin{split} g_2(l,l) &= -l, g_3(l,l) = -l \\ \nabla f &= (-l,-l), \nabla g_1 = (\frac{1}{3}, \frac{1}{3}), \end{split}$$
 $-d_1 \leq 1$ $g_2(\mathbf{x}) = -x_1 \le 0$ $\nabla g_2 = (-1,0), \nabla g_3 = (0,-1)$ $-d_2 \leq 1$ $g_3(\mathbf{x}) = -x_2 \le 0$ <u>Kuhn-Tucker necessary condition</u>: $\nabla L(\mathbf{d}, \mathbf{u}, \mathbf{s}) = \mathbf{0}$ Lagrange function $\begin{array}{c} \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ L = (-d_1 - d_2) + 0.5(d_1^2 + d_2^2) \\ & \begin{array}{c} & \begin{array}{c} \frac{\partial L}{\partial d_1} = -1 + d_1 + \frac{1}{3}u_1 - u_2 = 0 \\ \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} \frac{\partial L}{\partial d_1} = -1 + d_2 + \frac{1}{3}u_1 - u_2 = 0 \\ \end{array} \\ & \begin{array}{c} & \begin{array}{c} \frac{\partial L}{\partial d_2} = -1 + d_2 + \frac{1}{3}u_1 - u_3 = 0 \\ \end{array} \\ & \begin{array}{c} \frac{\partial L}{\partial d_2} = -1 + d_2 + \frac{1}{3}u_1 - u_3 = 0 \\ \end{array} \\ & \begin{array}{c} \frac{\partial L}{\partial d_2} = -1 + d_2 - 2 \right) + s_1^2 = 0 \\ \end{array} \\ & \begin{array}{c} \frac{\partial L}{\partial u_1} = \frac{1}{3}(d_1 + d_2 - 2) + s_1^2 = 0 \\ \end{array} \\ & \begin{array}{c} \frac{\partial L}{\partial u_2} = -d_1 - 1 + s_2^2 = 0 \\ \end{array} \\ & \begin{array}{c} \frac{\partial L}{\partial u_2} = -d_2 - 1 + s_3^2 = 0 \end{array} \end{array} \end{array}$ $\frac{\partial L}{\partial s_i} = u_i s_i = 0, \ u \ge 0, \ i = 1, 2, 3$ * The search direction also can be determined using the Simplex method. 82

Solution Procedure of S - Determination of the	SQP Using Search Dir	the Exa ection (mple Quadrati - Objecti 2/3)	c programming problem ve function: quadratic form aint: linear form
(ii&iii) Step 2&3: Define and solve	the QP problem	to determi	ne the search	direction (d ⁽¹⁾).
Constrained Optimal Design Problem (Original problem) Minimize $f(x) = x^2 + x^2 - 3x x_2$		Quad Minimize f	ratic Programm	ing Problem $(32d_2) + 0.5(d_1^2 + d_2^2)$
Subject to $g_1(\mathbf{x}) = \frac{1}{6}x_1^2 + \frac{1}{6}x_2^2 - 1.0 \le 0$	$1.732) = -3, \nabla f = (-1.732, -3)$	Subject to 0	$0.577d_1 + 0.577d_2 \\ -d_1 \le 1.732$	$\leq 5.866 \times 10^{-5}$
$g_{2}(\mathbf{x}) = -x_{1} \le 0$ $g_{3}(\mathbf{x}) = -x_{1} \le 0$ $g_{3}(\mathbf{x}) = -x_{1} \le 0$	$(1.732) = -5.866 \times 10^{-5}, \nabla g_1$ $(2,1.732) = -1.732, \nabla g_2 = (-5,1.732) = -1.732, \nabla g_3 = (0, -5, -1)$	= (0.577,0.577) 1,0) -1)	$-d_2 \le 1.732$	$d_1 = x_1 - 1.732, d_2 = x_2 - 1.732$
Lagrange function	Kuhn-Tucker ne	cessary con	dition: $\nabla L(\mathbf{d},$	u , s) = 0
$L = (-1.732d_1 - 1.732d_2) + 0.5(d_1^2 + d_2^2) + u_1[0.577(d_1 + d_2) - 5.866 \times 10^{-5} + s_1^2] + u_2(-d_1 - 1.732 + s_2^2) + u_3(-d_2 - 1.732 + s_3^2)$	$\frac{\partial L}{\partial d_1} = -1.732 + d_1 + d_2$ $\frac{\partial L}{\partial d_2} = -1.732 + d_2$ $\frac{\partial L}{\partial u_1} = 0.577 (d_1 + d_2)$ $\frac{\partial L}{\partial u_2} = -d_1 - 1.732 + d_2$ $\frac{\partial L}{\partial u_2} = -d_2 - 1.732 + d_2$	$+ 0.577u_1 - u_2 + 0.577u_1 - u_3 u_2) - 5.866 \times 10 + s_2^2 = 0 + s_3^2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	$= 0$ $= 0$ $y^{-6} + s_1^2 = 0$ $u^{(1)}$	search direction is
	$\frac{\partial L}{\partial s_i} = u_i s_i = 0, \ u \ge 0$	0, i = 1, 2, 3	* <u>The search directic</u> determined using t	$= (0, 1.316, 1.316)$ $\xrightarrow{\text{on also can be}}_{\text{the Simplex method.}} \qquad $

Formulatio	n of the Qua	dratic	Programm	ing Problem (2/5))
Quadratic Prog <i>Minimize</i> $\bar{f} = (-d_1 + d_2)$ <i>Subject to</i> $\frac{1}{3}d_1 + \frac{1}{3}$ $-d_1 \le 1$ $-d_2 \le 1$	gramming Problem $d_1 - d_2 + 0.5(d_1^2 + d_2^2)$ $d_2 \le \frac{2}{3}$	$\underbrace{\frac{\partial L}{\partial d_1}}_{\begin{array}{c} \frac{\partial L}{\partial d_2}: \\ \frac{\partial L}{\partial u_1}: \\ \frac{\partial L}{\partial u_2}: \end{array}}$	$\begin{aligned} \frac{d}{dt} &= -1 + d_1 + \frac{1}{3}u_1 - u_2 \\ &= -1 + d_2 + \frac{1}{3}u_1 - u_3 \\ &= \frac{1}{3}(d_1 + d_2 - 2) + s_1 \\ &= -d_1 - 1 + s_2^2 = 0 \end{aligned}$	$\frac{condition}{=0} = 0$ $= 0$ $\frac{2}{1} = 0$	
		$\frac{\partial L}{\partial u_3} = \frac{\partial L}{\partial s_i} =$	$= -d_2 - 1 + s_3^2 = 0$ = $u_i s_i = 0, u_i \ge 0, i =$ Multiply the both	= 1, 2, 3 $\Box > u_i s_i^2 = 0, u_i \ge 0, i =$ side of equations by s_i	1,2,3
$\frac{\text{Replace } s_i^2 \text{ with } s_i'}{s_i^2 = s_i' \ge 0}$	$\frac{\partial L}{\partial d_1} = -1 + d_1 + \frac{1}{3}u_1 - u_1 + \frac{\partial L}{\partial d_2} = -1 + d_2 + \frac{1}{3}u_1 - u_1 + \frac{\partial L}{\partial d_2} = -1 + d_2 + \frac{1}{3}u_1 - u_1 + \frac{\partial L}{\partial u_1} = \frac{1}{3}(d_1 + d_2 - 2) + \frac{\partial L}{\partial u_2} = -d_1 - 1 + s'_2 = 0$ $\frac{\partial L}{\partial u_3} = -d_2 - 1 + s'_3 = 0$ $\frac{\partial L}{\partial s_i} = u_i s'_i = 0$	y = 0 $u_2 = 0$ $u_3 = 0$ $s'_1 = 0$	$\begin{array}{c c} & \underline{Represent } s_i' \text{ to} \\ \hline s_i \text{ for the} \\ \hline convenience \end{array} $	$\frac{\partial L}{\partial d_1} = -1 + d_1 + \frac{1}{3}u_1 - u_2 = 0$ $\frac{\partial L}{\partial d_2} = -1 + d_2 + \frac{1}{3}u_1 - u_3 = 0$ $\frac{\partial L}{\partial u_1} = \frac{1}{3}(d_1 + d_2 - 2) + s_1 = 0$ $\frac{\partial L}{\partial u_2} = -d_1 - 1 + s_2 = 0$ $\frac{\partial L}{\partial u_3} = -d_2 - 1 + s_3 = 0$ $\frac{\partial L}{\partial s_i} = u_i s_i = 0$	uon
	$u_i, s_i' \ge 0, i = 1, 2, 3$			$u_i, s_i \ge 0, i = 1, 2, 3$	99

Determine the Search Direction by Using the Simplex Method - Iteration 1 (1/6) Simplex method to solve the quadratic programming problem 1. The problem to solve the Kuhn-Tucker necessary condition is the same with the problem having only the equality constraints (Linear Programming problem). 2. To solve the linear indeterminate equation, we introduce the artificial variables, define the artificial objective function, and then determine the initial basic feasible solution by using the Simplex method. $\mathbf{B}_{(5\times10)}\mathbf{X}_{(10\times1)} + \mathbf{Y}_{(5\times1)} = \mathbf{D}_{(5\times1)}$ Artificial variables 3. The artificial objective function is defined as follows. $w = \sum_{i=1}^{5} Y_i = \sum_{i=1}^{5} D_i - \sum_{i=1}^{10} \sum_{i=1}^{5} B_{ij} X_j = w_0 + \sum_{i=1}^{10} C_j X_j$ where $C_j = -\sum_{i=1}^{3} B_{ij}$: Add the elements of the *j*th column of the matrix B and change the its sign (initial relative objective coefficient). $w_0 = \sum_{i=1}^{5} D_i = 1 + 1 + \frac{2}{3} + 1 + 1 = \frac{14}{3}$: Initial value of the artificial objective function (summation of the all elements of the matrix D) 4. Solve the linear programming problem by using the Simplex and check whether the solution satisfies the following nonlinear equation. $u_i s_i = 0$; i = 1 to 3: Check whether the solution obtained from the linear indeterminate equation satisfies the nonlinear indeterminate equation and determine the solution.

De - I	term terat	ine ion	the 1 (2	Sea 2/6)	arch	n Di	rect	ion	by	Usiı	ng t	he	Sim	plex	M		$\begin{bmatrix} \mathbf{x}_1 \\ (=X_1) \end{bmatrix}$		
В	(5×10))	K _{(10×}	₁₎ +] Artifi	$\mathbf{Y}_{(5 imes 1)}$ icial v) varial	D _{(5×1} bles)	, [$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} 0 & -1 \\ 1 & 0 \\ \overline{5} & -\frac{1}{3} \\ 0 & 1 \\ 1 & 0 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{3}$ $\frac{1}{3}$ 0 0 0		0 0 -1 0 0 1 0 0 0 0	0 (0 (0 (1 (0 ($\begin{bmatrix} d_1^{-1} \\ d_2^{-1} \\ u_1 \\ u_2 \\ u_3 \\ s_1 \\ s_2 \end{bmatrix}$	$(=X_{3}) (=X_{4}) (=X_{5}) (=X_{6}) (=X_{7}) (=X_{8}) (=X_{9})$	$+\begin{bmatrix}Y_1\\Y_2\\Y_3\\Y_4\\Y_5\end{bmatrix}$	$=\begin{bmatrix}1\\1\\\frac{2}{3}\\1\\1\end{bmatrix}$
Def	ine th	e art	tificia	al ob	jectiv	ve fu	nctio	on fo	or us	ing t	he S	impl	ex m	etho	od:	$\lfloor s_3($	$=X_{10})$		
Sum	all the	rows	s (1~5	b): $\frac{1}{3}X$	$\int_{1}^{1} + \frac{1}{3} \lambda$	$K_2 - \frac{1}{3}$	$X_{3} - \frac{1}{3}$	X4 +	$\frac{2}{3}X_5 -$	$X_6 -$	$X_7 + X_7$	$X_8 + X$	$T_{9} + X_{1}$	$_{0} + Y_{1}$	$+Y_{2} +$	$Y_{3} + Y_{3}$	$Y_{4} + Y_{5} = -$	14	
Eve	occ the	artif	icial f	unctio	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 3	5 3	7	3 5	0	,	0	, ,	0 1		w	<u>, ,</u>	3	
war	d rearr	ange:		uncuc	JII as	$-\frac{1}{3}$	$X_1 - \frac{1}{3}$	$X_{2} +$	$\frac{1}{3}X_3 +$	$\frac{1}{3}X_4$	$-\frac{2}{3}X_{5}$	$+X_6$	+ X ₇ -	$X_8 -$	$X_{9} - Z_{1}$	$X_{10} = -$	$W - \frac{14}{3}$		
	_							Ł		L									
1]	X1	X2	X3	X4	X5	X6	X7	×8	X9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai	
	Y1	1	0	-1	0	1/3	-1	0	0	0	0	1	0	0	0	0	1	-	
	Y2	0	1	0	-1	1/3	0	-1	0	0	0	0	1	0	0	0	1	-	
	Y3	1/3	1/3	-1/3	-1/3	0	0	0	1	0	0	0	0	1	0	0	2/3	2/3	
	Y4	-1	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1	-	
	Y5	0	-1	0	1	0	0	0	0	0	1	0	0	0	0	1	1	-	
	A. Obj.	-1/3	-1/3	1/3	1/3	-2/3	1	1	-1	-1	-1	0	0	0	0	0	w-14/3	•	
Arti	ficial obj	ective	Sum	all th	† ie elei	ments	of th	ne rov	v and	chan	ge the	e its s	ign (e	x. Ro	w 1: -	(1+0	+1/3-1-	⊦0) =-1	1/3) 105

De - I	eterm terati	ine ion	the 1 (3	Sea 8/6)	arch	Dir	ecti	on I	by L	Jsin	g th	e Si	mp	lex	Met	hod			
2]	X1	X2	X3	X4	X5	X6	X7	X8	<u>X9</u>	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai	
	Y1	1	0	-1	0	1/3	-1	0	0	0	0	1	0	0	0	0	1	-	
	Y2	0	1	0	-1	1/3	0	-1	0	0	0	0	1	0	0	0	1	-	
	X8	1/3	1/3	-1/3	-1/3	0	0	0	1	0	0	0	0	1	0	0	2/3	-	
	Y4	-1	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1	1	
	Y5	0	-1	0	1	0	0	0	0	0	1	0	0	0	0	1	1	-	
	A. Obj.	0	0	0	0	-2/3	1	1	0	-1	-1	0	0	1	0	0	w-4	-	
3		X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai	
	Y1	1	0	-1	0	1/3	-1	0	0	0	0	1	0	0	0	0	1	-	
	Y2	0	1	0	-1	1/3	0	-1	0	0	0	0	1	0	0	0	1	-	
	X8	1/3	1/3	-1/3	-1/3	0	0	0	1	0	0	0	0	1	0	0	2/3	-	
	X9	-1	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1	-	
	Y5	0	-1	0	1	0	0	0	0	0	1	0	0	0	0	1	1	1	
	A. Obj.	-1	0	1	0	-2/3	1	1	0	0	-1	0	0	1	1	0	w-3	-	
4	.]	X1	¥2	X3	X4	X5	X6	¥7	¥8	XQ	X10	¥1	¥2	¥3	Y4	¥5	bi	bi/ai	1
	Y1	1	0	-1	0	1/3	-1	0	0	0	0	1	0	0	0	0	1	1	
	Y2	0	1	0	-1	1/3	0	-1	0	0	0	0	1	0	0	0	1		
	X8	1/3	1/3	-1/3	-1/3	0	0	0	1	0	0	0	0	1	0	0	2/3	2	
	X9	-1	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1	-	
	X10	0	-1	0	1	0	0	0	0	0	1	0	0	0	0	1	1	-	
	A. Obj.	-1	-1	1	1	-2/3	1	1	0	0	0	0	0	1	1	1	w-2	-	106

X1 Y2	1	0			72	X6	X7	X8	X9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai
Y2	0		-1	0	1/3	-1	0	0	0	0	1	0	0	0	0	1	-
		1	0	-1	1/3	0	-1	0	0	0	0	1	0	0	0	1	1
X8	0 1	1/3	0	-1/3	-1/9	1/3	0	1	0	0	-1/3	0	1	0	0	1/3	1
X9	0	0	0	0	1/3	-1	0	0	1	0	1	0	0	1	0	2	-
X10	0	-1	0	1	0	0	0	0	0	1	0	0	0	0	1	1	-
A. Obj.	0	-1	0	1	-1/3	0	1	0	0	0	1	0	1	1	1	w-1	-
]	X1)	X2	X3	X4	X5	X6	X7	X8	Х9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai
]	X1)	X2	X3	X4	X5	X6	X7	X8	X9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai
) X1	X1)	X2 0	X3 -1	X4 0	X5 1/3	X6 -1	X7 0	X8 0	X9 0	X10 0	Y1 1	Y2 0	Y3 0	Y4 0	Y5 0	bi 1	bi/ai -
X1 X2	X1) 1 0	X2 0 1	X3 -1 0	X4 0 -1	X5 1/3 1/3	X6 -1 0	X7 0 -1	X8 0 0	X9 0 0	X10 0 0	Y1 1 0	Y2 0 1	Y3 0 0	Y4 0 0	Y5 0 0	bi 1 1	bi/ai - -
X1 X2 X8	X1) 1 0 0 0	X2 0 1 0	X3 -1 0	X4 0 -1 0	X5 1/3 1/3 -2/9	X6 -1 0 1/3	X7 0 -1 1/3	X8 0 0 1	X9 0 0	X10 0 0	Y1 1 0 -1/3	Y2 0 1 -1/3	Y3 0 0 1	Y4 0 0	Y5 0 0	bi 1 1 0	bi/ai - -
X1 X2 X8 X9	X1 >> 1 0 0 0 0 0	X2 0 1 0 0	X3 -1 0 0	X4 0 -1 0 0	X5 1/3 1/3 -2/9 1/3	X6 -1 0 1/3 -1	X7 0 -1 1/3 0	X8 0 0 1 0	X9 0 0 0 1	X10 0 0 0	Y1 1 0 -1/3 1	Y2 0 1 -1/3 0	Y3 0 0 1 0	Y4 0 0 0 1	Y5 0 0 0 0	bi 1 1 0 2	bi/ai - - -
X1 X2 X8 X9 X10	X1) 1 0 0 0 0 0	X2 0 1 0 0 0	X3 -1 0 0 0 0	X4 0 -1 0 0 0	X5 1/3 1/3 -2/9 1/3 1/3	X6 -1 0 1/3 -1 0	X7 0 -1 1/3 0 -1	X8 0 0 1 0 0	X9 0 0 1 0	X10 0 0 0 0 1	Y1 1 0 -1/3 1 0	Y2 0 -1/3 0 1	Y3 0 0 1 0 0	Y4 0 0 1 0	Y5 0 0 0 0 1	bi 1 1 0 2 2	bi/ai - - - -

Determine the Search Direction by Using the Simplex Method - Iteration 1 (5/6) X1 X2 Х3 X4 X5 X6 X7 X8 Х9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai -1 X1 -1 1/3 X2 1/3 -1 -1 X8 -2/9 1/3 1/3 -1/3 -1/3 1/3 -1 X9 X10 1/3 -1 A. Obj. w-0 Since the value of the objective function becomes zero, the initial basic feasible $\mathbf{X}^{T}_{(1\times10)} = \begin{bmatrix} d_1^+ & d_2^+ & d_1^- & d_2^- & u_1 & u_2 & u_3 & s_1 & s_2 & s_3 \end{bmatrix}$ solution is obtained. Basic solution: $X_1 = 1, \quad X_2 = 1, \quad X_8 = 0, \quad X_9 = 2, \quad X_{10} = 2$ Nonbasic solution: $X_3 = X_4 = X_5 = X_6 = X_7 = 0$ This solution satisfies the nonlinear indeterminate equation ($X_i X_{3+i} = 0; i = 5 \text{ to } 7, X_i \ge 0; i = 1 \text{ to } 10$) So, the optimal solution is $d_1 = d_2 = 1, u_1 = u_2 = u_3 = 0, s_1 = 0, s_2 = s_3 = 2$. Caution: In the Pivot step, if the smallest (i.e., the most negative) coefficient of the artificial objective function or the smallest positive ratio " b/a_i " appears more than one time, the initial basic feasible solution can be changed depending on the selection of the pivot element in the pivot procedure. • We have to check the solution until the nonlinear indeterminate equation $(u_i \times s_i = 0)$ are satisfied.

Determine the Search Direction by Using the Simplex Method - Iteration 2 (4/10)														
<u>Kuhn-Tucker necessary condition</u> : $\nabla L(\mathbf{d}^+, \mathbf{d}^-, \mathbf{u}, \mathbf{s}) = 0$														
$\begin{bmatrix} \mathbf{H}_{(2\times2)} & -\mathbf{H}_{(2\times2)} & \mathbf{A}_{(2\times3)} & 0_{(2\times3)} \\ \mathbf{A}^{T}_{(3\times2)} & -\mathbf{A}^{T}_{(3\times2)} & 0_{(3\times3)} & \mathbf{I}_{(3\times3)} \end{bmatrix}_{(3\times3)} \begin{bmatrix} \mathbf{d}_{(2\times1)}^{+} \\ \mathbf{d}_{(2\times1)}^{-} \\ \mathbf{u}_{(3\times1)} \end{bmatrix}_{(3\times1)} = \begin{bmatrix} -\mathbf{c}_{(2\times1)} \\ \mathbf{b}_{(3\times1)} \end{bmatrix}$ $= \mathbf{B}_{(5\times10)} = \begin{bmatrix} \mathbf{a}_{(3\times1)} \\ \mathbf{s}_{(3\times1)} \end{bmatrix}_{(3\times1)} = \mathbf{D}_{(5\times1)}$ $= \mathbf{X}_{(10\times1)}$ where, $\mathbf{d}_{(2\times1)}^{+} = \begin{bmatrix} \mathbf{d}_{1}^{+} \\ \mathbf{d}_{2}^{-} \end{bmatrix}, \mathbf{d}_{(2\times1)}^{-} = \begin{bmatrix} \mathbf{d}_{1}^{-} \\ \mathbf{d}_{2}^{-} \end{bmatrix}, \mathbf{c}_{(2\times1)}^{-} = \begin{bmatrix} -1.732 \\ -1.732 \\ -1.732 \end{bmatrix}, \mathbf{H}_{(2\times2)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{A}_{(2\times3)} = \begin{bmatrix} 0.577 & -1 & 0 \\ 0.577 & 0 & -1 \\ 0.577 & 0 & -1 \end{bmatrix}, \mathbf{b}_{(3\times1)} = \begin{bmatrix} 0 \\ 1.732 \\ -1.732 \end{bmatrix}$														
$\mathbf{B}_{(5\times10)} = \begin{bmatrix} 1 & 0 & & -1 & 0 & & 0.577 & -1 & 0 & & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & & 0.577 & 0 & -1 & 0 & 0 & 0 \\ 0.577 & 0.577 & & -0.577 & & 0 & 0 & 0 & & 1 & 0 & 0 \\ -1 & 0 & & 1 & 0 & & 0 & 0 & 0 & & 1 & 0 \\ 0 & -1 & 0 & 1 & & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{X}^{T}_{(1\times10)} = \begin{bmatrix} d_{1}^{+} & d_{2}^{+} & d_{1}^{-} & d_{2}^{-} & u_{1} & u_{2} & u_{3} & s_{1} & s_{2} & s_{3} \end{bmatrix}, \mathbf{D}^{T}_{(1\times5)} = \begin{bmatrix} 1.732 & 1.732 & 0 & 1.732 & 1.732 \end{bmatrix}$														
Topics in Ship Design Automation, Fall 2016, Myung-II Roh														

Determine the Search Direction by Using the Simplex Method - Iteration 2 (6/10)

Simplex method to solve the quadratic programming problem

1. The problem to solve the Kuhn-Tucker necessary condition is the same with the problem having only the equality constraints (linear programming problem).

2. To solve the linear indeterminate equation, we introduce the artificial variables, define the artificial objective function and determine the initial basic feasible solution by using the Simplex method. $\mathbf{B}_{(5,10)}\mathbf{X}_{(10,1)} + \mathbf{Y}_{(5,1)} = \mathbf{D}_{(5,1)}$

$$\mathbf{B}_{(5\times10)}\mathbf{X}_{(10\times1)} + \mathbf{Y}_{(5\times1)} = \mathbf{D}_{(5\times1)}$$

Artificial variables

3. The artificial objective function is defined as follows.

$$w = \sum_{i=1}^{5} Y_i = \sum_{i=1}^{5} D_i - \sum_{j=1}^{10} \sum_{i=1}^{5} B_{ij} X_j = w_0 + \sum_{j=1}^{10} C_j X_j$$

where $C_j = -\sum_{i=1}^{5} B_{ij}$: Add the elements of the *j*th column of the matrix B and change the its sign (initial relative objective coefficient).

$$w_0 = \sum_{i=1}^5 D_i = 1 + 1 + \frac{2}{3} + 1 + 1 = \frac{14}{3}$$
: Initial value of the artificial objective function (summation of the all elements of the matrix D)

4. Solve the linear programming problem by using the Simplex and check whether the solution satisfies the following equation.

 $u_i s_i = 0$; i = 1 to 3: Check whether the solution obtained from the linear indeterminate equation satisfies the nonlinear indeterminate equation and determine the solution.

Det	Determine the Search Direction by Using the Simplex Method - Iteration 2 (7/10)																
- Ite	- iteration 2 (7/10) $\begin{bmatrix} d_1^+ \end{bmatrix}$																
																d_{2}^{+}	
							Γ 1	0		_1	0	0 577	-1	0	0 0]	$d_1^- \mid [1]$	732]
							0	1		0	_1	0.577	0 -	-1 0	0 0	d_2^-	732
Б	v				n	<u>ــ</u>	0.57	7 0.5	77 0	577	0 577	0.577	0	1 1		<i>u</i> ₁	0
$ \mathbf{B}_{(5\times10)}\mathbf{A}_{(10\times1)} + \mathbf{Y}_{(5\times1)} = \mathbf{D}_{(5\times1)} \mathbf{\Psi} \begin{bmatrix} 0.5/7 & 0.5/7 & -0.5/7 & 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix} \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}^{=} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} $															732		
		Δ,	tificia	l vari:	ahlae			0	1	0	1	0	0			<i>u</i> ₃	732
Artificial variables $\begin{bmatrix} 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$													/32]				
	$\begin{vmatrix} s_1 \\ s_2 \end{vmatrix}$																
Defin	Define the artificial objective function for using the Simplex method $\left \begin{array}{c} s_{3} \\ s_{3} \end{array} \right $																
Sum the all rows (1~5): $0.577X_1 + 0.577X_2 - 0.577X_3 - 0.577X_4 + 1.154X_5 - X_6 - X_7 + X_8 + X_9 + X_{10} + Y_1 + Y_2 + Y_4 + Y_5 = 6.928$																	
D	Sum the direction (1~5). $0.577A_1 + 0.577A_2 = 0.577A_3 = 0.577A_4 + 1.154A_5 = A_6 - A_7 + A_8 + A_9 + A_{10} + \frac{1}{1 + 1_2 + 1_3 + 1_4 + 1_5} = 0.928$																
Replac	Replace the summation of the all $-0.577X_1 - 0.577X_2 + 0.577X_3 + 0.577X_4 - 1.154X_5 + X_5 + X_7 - X_9 - X_{10} = w - 6.928$															28	
arunc		, and i	carran	ge.						~							
									\checkmark								
┍ᡃ᠋╌	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai
Y1	1	0	-1	0	0.577	-1	0	0	0	0	1	0	0	0	0	1.732	3
Y2	0	1	0	-1	0.577	0	-1	0	0	0	0	1	0	0	0	1.732	3
Y3	0.577	0.577	-0.577	-0.577	0	0	0	1	0	0	0	0	1	0	0	0	-
Y4	-1	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1.732	
Y5	0	-1	0	1	0	0	0	0	0	1	0	0	0	0	1	1.732	-
A. Obj.	-0.577	-0.577	0.577	0.577	-1.154	1	1	-1	-1	-1	0	0	0	0	0	w-6.928	-
Artific	cial obie	ctive	1	↓													
f	function	5	Sum al	l the e	lemen	ts of tl	he row	and c	hange	the i	ts sign	(ex. 1	row: -	(1+0	+1/3-1	+0)=-1/	3) 117

De [.] - It	Determine the Search Direction by Using the Simplex Method - Iteration 2 (8/10)																
				_			_	-				_	-	-			
IL55	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai
X5	1.732	0.000	-1.732	0.000	1.000	-1.732	0.000	0.000	0.000	0.000	1.732	0.000	0.000	0.000	0.000	3.000	-1.732
Y2	-1.000	1.000	1.000	-1.000	0.000	1.000	-1.000	0.000	0.000	0.000	-1.000	1.000	0.000	0.000	0.000	0.000	0.000
Y3	0.577	0.577	-0.577	-0.577	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000
¥4	-1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	1.732	1.732
Y5	0.000	-1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	1.732	-
A. Ob	j. 1.423	-0.577	-1.423	0.577	0.000	-1.000	1.000	-1.000	-1.000	-1.000	2.000	0.000	0.000	0.000	0.000	w-3.464	
-3																	
	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai
X5	0.000	1.732	0.000	-1.732	1.000	0.000	-1.732	0.000	0.000	0.000	0.000	1.732	0.000	0.000	0.000	3.000	-
X3	-1.000	1.000	1.000	-1.000	0.000	1.000	-1.000	0.000	0.000	0.000	-1.000	1.000	0.000	0.000	0.000	0.000	-
Y3	0.000	1.155	0.000	-1.155	0.000	0.577	-0.577	1.000	0.000	0.000	-0.577	0.577	1.000	0.000	0.000	0.000	-
¥4	0.000	-1.000	0.000	1.000	0.000	-1.000	1.000	0.000	1.000	0.000	1.000	-1.000	0.000	1.000	0.000	1.732	-
Y5	0.000	-1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	1.732	1.732
A. Ob	j. 0.000	0.845	0.000	-0.845	0.000	0.423	-0.423	-1.000	-1.000	-1.000	0.577	1.423	0.000	0.000	0.000	w-3.464	
-4																	
	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai
X5	0.000	1.732	0.000	-1.732	1.000	0.000	-1.732	0.000	0.000	0.000	0.000	1.732	0.000	0.000	0.000	3.000	-
X3	-1.000	1.000	1.000	-1.000	0.000	1.000	-1.000	0.000	0.000	0.000	-1.000	1.000	0.000	0.000	0.000	0.000	-
Y3	0.000	1.155	0.000	-1.155	0.000	0.577	-0.577	1.000	0.000	0.000	-0.577	0.577	1.000	0.000	0.000	0.000	-
Y4	0.000	-1.000	0.000	1.000	0.000	-1.000	1.000	0.000	1.000	0.000	1.000	-1.000	0.000	1.000	0.000	1.732	1.732
X10	0.000	-1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	1.732	-
A. Ob	j. 0.000	-0.155	0.000	0.155	0.000	0.423	-0.423	-1.000	-1.000	0.000	0.577	1.423	0.000	0.000	1.000	w-1.732	

Dete - Ite	Determine the Search Direction by Using the Simplex Method - Iteration 2 (9/10)																
			-				_	-						-			
ူာ	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai
X5	0.000	1.732	0.000	-1.732	1.000	0.000	-1.732	0.000	0.000	0.000	0.000	1.732	0.000	0.000	0.000	3.000	1.732
X3	-1.000	1.000	1.000	-1.000	0.000	1.000	-1.000	0.000	0.000	0.000	-1.000	1.000	0.000	0.000	0.000	0.000	0.000
Y3	0.000	1.155	0.000	-1.155	0.000	0.577	-0.577	1.000	0.000	0.000	-0.577	0.577	1.000	0.000	0.000	0.000	0.000
X9	0.000	-1.000	0.000	1.000	0.000	-1.000	1.000	0.000	1.000	0.000	1.000	-1.000	0.000	1.000	0.000	1.732	-1.732
X10	0.000	-1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	1.732	-1.732
A. Obj.	0.000	-1.155	0.000	1.155	0.000	-0.577	0.577	-1.000	0.000	0.000	1.577	0.423	0.000	1.000	1.000	w-0.000	
6-	V1	¥2	V2	¥4	VE	¥4	¥7	VO	VO	V10	V1	V2	V2	V4	VE	hi	hi/ai
	1 722	AZ	^3 1 722	A4	1 000	1 722		O	A9	0.000	1 722	12	0.000	0.000	0.000	2 000	1 722
	1.732	1.000	1 000	1.000	0.000	1 000	1.000	0.000	0.000	0.000	1.732	1.000	0.000	0.000	0.000	3.000	0.000
×2 V2	1 155	0.000	1.000	-1.000	0.000	0.577	0.577	1.000	0.000	0.000	-1.000	0.577	1.000	0.000	0.000	0.000	0.000
	1.155	0.000	1 000	0.000	0.000	-0.577	0.000	0.000	1.000	0.000	0.577	-0.577	0.000	1.000	0.000	1 722	1 722
×10	1.000	0.000	1.000	0.000	0.000	1.000	1.000	0.000	0.000	1.000	1.000	1.000	0.000	0.000	1.000	1.732	1 722
	1 155	0.000	1.000	0.000	0.000	0.577	0.577	1 000	0.000	0.000	-1.000	1.000	0.000	1.000	1.000	1.732 w 0.000	-1.732
A. 00).	-1.133	0.000	1.155	0.000	0.000	0.577	-0.377	-1.000	0.000	0.000	0.423	1.577	0.000	1.000	1.000	w-0.000	
ILT	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai
X5	0.000	0.000	0.000	0.000	1.000	-0.866	-0.866	-1.500	0.000	0.000	0.866	0.866	-1.500	0.000	0.000	3.000	
X2	0.000	1.000	0.000	-1.000	0.000	0.500	-0.500	0.866	0.000	0.000	-0.500	0.500	0.866	0.000	0.000	0.000	
X1	1.000	0.000	-1.000	0.000	0.000	-0.500	0.500	0.866	0.000	0.000	0.500	-0.500	0.866	0.000	0.000	0.000	
X9	0.000	0.000	0.000	0.000	0.000	-0.500	0.500	0.866	1.000	0.000	0.500	-0.500	0.866	1.000	0.000	1.732	
X10	0.000	0.000	0.000	0.000	0.000	0.500	-0.500	0.866	0.000	1.000	-0.500	0.500	0.866	0.000	1.000	1.732	
A. Obj.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	1.000	1.000	1.000	w-0.000	

Dete	Determine the Search Direction by Using the Simplex Method															Ú	
┢┖┚╴	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	Y1	Y2	Y3	Y4	Y5	bi	bi/ai
X5	0.000	0.000	0.000	0.000	1.000	-0.866	-0.866	-1.500	0.000	0.000	0.866	0.866	-1.500	0.000	0.000	3.000	
X2	0.000	1.000	0.000	-1.000	0.000	0.500	-0.500	0.866	0.000	0.000	-0.500	0.500	0.866	0.000	0.000	0.000	
X1	1.000	0.000	-1.000	0.000	0.000	-0.500	0.500	0.866	0.000	0.000	0.500	-0.500	0.866	0.000	0.000	0.000	
X9	0.000	0.000	0.000	0.000	0.000	-0.500	0.500	0.866	1.000	0.000	0.500	-0.500	0.866	1.000	0.000	1.732	
X10	0.000	0.000	0.000	0.000	0.000	0.500	-0.500	0.866	0.000	1.000	-0.500	0.500	0.866	0.000	1.000	1.732	
A. Obj.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	1.000	1.000	1.000	w-0.000	
A Basic Nonb	$\mathbf{X}'_{(1 \times 10)} = \begin{bmatrix} d_1^+ & d_2^+ & d_1^- & d_2^- & u_1 & u_2 & u_3 & s_1 & s_2 & s_3 \end{bmatrix}$ Basic solution: $X_5 = 3, X_2 = 0, X_1 = 0, X_9 = 1.732, X_{10} = 1.732$ Nonbasic solution: $X_2 = X_4 = X_6 = X_7 = X_9 = 0$																
This s So, th ➡	This solution satisfy the nonlinear indeterminate equation $(X_i X_{3+i} = 0; i = 5 \text{ to } 7, X_i \ge 0; i = 1 \text{ to } 10)$ So, the optimal solution is $d_1 = d_2 = 0$, $u_1 = 3$, $u_2 = u_3 = 0$, $s_1 = 0$, $s_2 = s_3 = 1.732$. \blacklozenge In the Pivot step, if the smallest (i.e., the most negative) coefficient of the artificial objective function or														<i>to</i> 10). n or		
	the smallest positive ratio "b _i /a _i " appears more than one time, the initial basic feasible solution can be changed by depending on the selection of the pivot element in the pivot procedure.													e fied.			
Fopics in St	nip Design	Automati	ion. Fall 20	16. Myun	a-II Roh										J	Jala	b 120

Formulation of the Quadratic Programming Problem to Determine the Search Direction Minimize $f(\mathbf{x} + \Delta \mathbf{x}) \cong f(\mathbf{x}) + \nabla f^T(\mathbf{x})\Delta \mathbf{x} + 0.5\Delta \mathbf{x}^T \mathbf{H}\Delta \mathbf{x}$ The second-order Taylor series expansion of the objective function Subject to $h_j(\mathbf{x} + \Delta \mathbf{x}) \cong h_j(\mathbf{x}) + \nabla h_j^T(\mathbf{x})\Delta \mathbf{x} = 0; j = 1 \text{ to } p$ The first-order (linear) Taylor series expansion of the equality constraints $g_j(\mathbf{x} + \Delta \mathbf{x}) \cong g_j(\mathbf{x}) + \nabla g_j^T(\mathbf{x})\Delta \mathbf{x} \le 0; j = 1 \text{ to } m$ The first-order (linear) Taylor series expansion of the inequality constraints $\mathbf{p}_j(\mathbf{x} + \Delta \mathbf{x}) \cong g_j(\mathbf{x}) + \nabla g_j^T(\mathbf{x})\Delta \mathbf{x} \le 0; j = 1 \text{ to } m$ The first-order (linear) Taylor series expansion of the inequality constraints $\mathbf{p}_j(\mathbf{x} + \Delta \mathbf{x}) \cong g_j(\mathbf{x}) + \nabla g_j^T(\mathbf{x})\Delta \mathbf{x} \le 0; j = 1 \text{ to } m$ The first-order (linear) Taylor series expansion of the inequality constraints Define: $\bar{f} = f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x}), e_j = -h_j(\mathbf{x}), b_j = -g_j(\mathbf{x}), c_i = \partial f(\mathbf{x})/\partial x_i, n_{ij} = \partial h_j(\mathbf{x})/\partial x_i, a_{ij} = \partial g_j(\mathbf{x})/\partial x_i, d_i = \Delta x_i$ Minimize $\bar{f} = \mathbf{c}^T_{(1\times n)}\mathbf{d}_{(n\times 1)} + \frac{1}{2}\mathbf{d}^T_{(1\times n)}\mathbf{H}_{(n\times n)}\mathbf{d}_{(n\times 1)}$: Quadratic objective function Subject to $\mathbf{N}^T_{(p\times n)}\mathbf{d}_{(n\times 1)} = \mathbf{e}_{(p\times 1)}$: Linear equality constraints $\mathbf{A}^T_{(m\times n)}\mathbf{d}_{(n\times 1)} \le \mathbf{b}_{(m\times 1)}$: Linear inequality constraints

