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6.1 Optimality Condition Using Kuhn-
Tucker Necessary Condition
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Optimal Solution Using Optimality Condition
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Optimality Conditions for Function of Single Variable
- The Maximum and Minimum of the Function

Review of the Course of High School

“4=5to| HM” (Mathematics IlI) Review"“6. Maximum, Minimum and Differentials”(p.104)

y y
- \Maximum 1
/-1 1\ X -1\/1 X
- ~ Minimum

1) Maximum value: The increase of the value of the continuous function f(x)
is changed to the decrease of that at x =x*.

2) Minimum value: The decrease of the value of the continuous function f(x)
is changed to the increase of that at x =x*.

f'(x)=0

(Necessary condition for x = x* to be a maximum or minimum)

ydlab -
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Optimality Conditions for Function of Single Variable
- First-Order Necessary and Sufficient Conditions (1/3)

= First-order necessary condition for the function of a single variable: f'(x") = 0

Proof) The Taylor series expansion of f(x) at the point x" is as follows.

109= 76+ LD ey LIS (o
2 dx Lo
Remainder
Let x - x* = d, the equation is as follows. : If the difference between
. N 1 . ' x and x" is small, the
f(x) = f(x )+ f'(x )d +_f"(x )d2 +R value of the remainder is
2 also very small.

From this equation, the change in the function at x7, i.e., f{x) - fix") = Af(x) is given as

A (x)= f'(x")d 4—%f"(x*)a’2 +R

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ dl“b 2

Optimality Conditions for Function of Single Variable
- First-Order Necessary and Sufficient Conditions (2/3)

Af00=f09—f@3=fo3d+%foﬁf+R

Af must be positive, if x* is a local minimum point.

x —d

Six) is minimum. fix) is maximum. fix") is neither minimum nor
maximum (inflection point).

Since d (= x - x*) is small, the first-order term f(x")d dominates other terms.
And the sign of the term f(x")d is arbitrary.

Thus, the only way Af can be positive regardless of the sign of d in the neighborhood of x*
is /(") = 0.

In the same way, Af must be negative if x* is a local maximum point. So, the only way Af
can be negative regardless of the sign of d in a neighborhood of x™ is f'(x") = 0.
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Optimality Conditions for Function of Single Variable
- First-Order Necessary and Sufficient Conditions (3/3)

. . g | R

M) =f()=fx)=/f(x )d+5f (x)d* +R

* Now, we need a sufficient condition to determine which of the stationary points are
actually minimum for the function.

Since stationary points satisfy the necessary condition f(x") = 0, the change in function
Af (x)=f'(x")d +%f"(x‘)d2 +R becomes as follows.

M@ =3 [+ R

Since the second-order term dominates all other higher-order terms, the term can be

positive for all d =0, if .
f"(x ) >0 (sufficient condition)

............................................................................. A S NN EEEEEEEEEEEE NS RRSRERRERREREaRES

Summary :
» First-order necessary condition i = Sufficient condition
If x* is a local minimum point, f(x*) = 0. If x* is a stationary point (f(x") = 0)

. . . i and f'(x") >0, x* is a local minimum point.
If £(x")=0, x" is a stationary point i fe) ! fnimum pot

(minimum, maximum, or inflection point).

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm 1

Optimality Conditions for Function of Several Variables

= Matrix form of the Taylor series expansion for the function of two variables

Element of the 2x2 Matrix

F00= F6O)+ V(&) (x=x)+ = (x=x Y HOO) (x=x )+ R
2 —

= Matrix form of the Taylor series expansion for the function of several variables
: It has the same form of the function of two variables.

*
X, X ,Vf : n dimensional vector
HeM,

= By defining x - x* = d, the Taylor series expansion for the function of the several
variables is as follows. - ----- T

(< +d) = f(x) +§Vf(x*)T§d Jnf%dTH(x*)dH R

gemmmeereind PR A

: . 1 . i sufficient conditions for x = x*
: T _n —d47 :
Evf(x ) =0, > d"H(x )d > OE» to be a local minimum
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[Summary] Optimality Conditions for Function of
Several Variables

* The Taylor series expansion of f{x), which is the function of » variables, gives

f(x)=f(x)+VFx)d+ %dTH(x*)d +R

* From this equation, the change in the function at x*, i.e., Af(x) = fix) - fix"), is given as
* 1 *
Af =Vf(x )Td+5dTH(x Yd+R
= If we assume a local minimum is at x*, then Af must be positive.

1) the first-order necessary condition:

eces
If VAx') =0, i.e.,%f)ﬂ), (i=12.

maximum, or inflection point).

n), x* is a stationary point (minimum,

2) the sufficient condition:
If d’TH(x")d > 0, then the stationary point (VA(x)T=0® Vf{x") =0) is a local
minimum.

To be d"H(x")d > 0, H(x") must be positive definite.

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm 12

Lagrange Multiplier for Equality Constraints
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Necessary Condition for a Stationary Point: Total Derivative
df=0 % gradf=0

S +Ax,x; +Ax,) o dx, | The symbol "d" refers to the infinitesimal
£ %) N ox, change. By definition of “d”, we can write
S the change in function f as follows:
- N Af The ch f th
f - i df funct?of\ |a: fczretct?on
fOx) T o o o
Stope = f f
N oo | |df =L dx, + -2 dx,
B ox, ox,
X Slope =—
2 ox, The change of the function
‘e dx ﬁdx in x, direction
(dy(! dx N ox . . .
s If df=0, then x" is a stationary point.
[ X, Ax, =dx,
\ X / To be df=0 regardless of the sign of dx,

o/

A = Avﬁ—Av +—[G / 242 C o Av‘Ax +g
X

Ay,

2

0x,0n

e

The change in the function fix,, x,) can be expressed : and dx,, dflx, and &fix, must be zero.
using Taylor expansion as follows :

i It means that the gradient of function f

9 o :
If Ax, —0,Ax, — 0, the first-order term af Ax + G)}: Av, i must be equal to zero.
dominates other terms. af a
0T V=0
Therefore, Af can be approximated as Af~ f Ax +§iM i 7

Definition of Stationary Point

X.

\

2

f(x,x,)

Given: Minimize f{x,, x,)
Find: Stationary point (x,*, x,*)

S(xxy)

oBjECcT
FUNCTION

~

* *
(5 %)

OPTIMUM ( MINIMUM )

X

The change in function (df) at the point (x,",
x,") with the change in variables (dx,, dx,) is
as follows.

0
df = 9 ——dx, + g ——dx,
ox, 0ox,
The point at which the change in function
(df) is zero is called stationary point.

It includes the minimum, maximum, and
inflection (saddle) point.

Note: In the general engineering optimization
problem, the optimum point (x) is more important
than the optimum value (f).

Example] Principal dimensions of a ship (L, B, D, Cg)
to minimize the shipbuilding cost is more
important than the shipbuilding cost itself.
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Stationary Point for Unconstrained Optimization Problem

Given: Minimize f(x,,x,,x,)

Find: Stationary point (x;*, x,", x;")

0 of 0
df :idx1 +idx2 +idx3
0ox, X, ox,
At the stationary point, the change in the function (df) is zero.
The gradient of the function at the stationary point must be zero, because the

change in the function (df) can be only zero regardless of the sign of dx,, dx,, and dx;.

of of of Becagse ‘Minimize f”is formulated asan
—=——=—=0 equation (df=0), the number of equations is
ax,  Ox, Ox equal to the number of unknown variables.

(Determinate problem)

= Vf =0

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm 17

Stationary Point for Constrained Optimization Problem (1/3)

: S Method:
Given: Minimize f(x,,x,,X;)
1. Express / (equality constraint) as an explicit function
Subject to h(x,,x,,%,)=0 of x;.

Find: Stationary point (x,", x,", x;") 2. 'Sub;;itl:]te x, into f and find the stationary point by
using df=0.

In many problem, it may not be possible to

h . . Is there any method to obtain the
express i (equality constraint) as an explicit

function of x stationary point if the equality
1 .
Example) It is difficult to express the following equality cons‘tr'amt cap n;)t be expressed asan
constraint as an explicit function. explicit function?
ex) h(x;,x,,x;)=tanx, +cosx, +e* =0
Solution) D ]
df=0 at the stationary point. i Since h(x,x,x;) =0, dh is also zero.
3 9 3 oh oh oh
dledx,+idx2+ldx3=0 ------ ® i dh=—dx+—dx,+—dx;=0 - ®
0ox, 0Ox, 0ox; 0ox, X, X,

Since equation @ and @ are equal to zero, the following equation is always satisfied.

df + /1 . dh = O . Where A is an undetermined coefficient ‘Lagrange multiplier’.

opics in Ship Design i Eall 2016, Myvung:Il Roh ’ !dwlunnb“ 18
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Stationary Point for Constrained Optimization Problem (2/3)

. o S g
Given: Minimize f(x,,x,,X;) ® df=—— o dx, +—— v, o ——dx, =0
1 3
Subject to h(x,,x,,x,)=0
, 7 (,1 %) @ dh=" e+ M+ Mg~
Find: Stationary point (x;", x,", x;%) Ox, ox, ox,

Because of the equality constraint 4,
dx,, dx,, and dx, are not independent.

df —+ l . dh = O A Undetermined Coefficient ‘Lagrange multiplier’

This equation can be rearranged as follows.

8fa?+f +ia’3 /”Lahd %d +ahd3:0
ox, ox, Oox; ox, ox, Oox;

i+ﬂa—h dx, + iJr}La—h dx, + i+ﬂ% dx, =0

ox, ox, 0ox, ox, ox, ox,

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm 19

Stationary Point for © df_afd Y g o g0
Constrained Optimization Problem (3/3) o, oy

~ ~ ~
Oh Oh Oh

® dh=——dx,+——dx,+——dx; =0
0ox, 0ox, 0Ox,

Because of the equality constraint 4,

dx,, dx, and dx; are not independent.

Given: Minimize f(x,,x,,X;)

Subject to h(x,,x,,x,)=0

Find: Stati int (" x,% X" df +4-dr=0
na: ationar oln N
yp (XI Y227 ) A: Undetermined Coefficient
. ‘Lagrange multiplier’
(l+/1@ dx, + af+/1— dx, g +ﬂ— dx; =0
ox,  Ox x, ox,) ° X, X,

If the dx,, dx,, and dx; were all independent of each other, all terms in the brackets should be zero to
satisfy the equation. This however, is not the case because of the equality constraint A. Let’s try to
make the first term to be zero by determining a proper value of 4, so that the following equation is
satisfied without considering the dx,.

(42218
ox,  Ox, ox;  Oxy

Since dx, and dx, are independent, the terms in the brackets must be zero to satisfy the equation.

a0, | L p g [ L0
axl 0x, 0ox, 0ox, 0Ox, 0Ox,

Therefore, the point (x,, x,, x;, 4) that satisfies the following equations is a stationary point.

Y0y A0, 4 Unknown variables: (x;, x,, x3, 2)

ax, ox, ox, 0x, .

of . oh 4 Equations

—+A—=0, h(x,x,,x)=0 . . .

ox, oy There exists an unique solution. 20

2017-06-17
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Lagrange Multiplier for Equality Constraints

The point (x;, x,, x;, 4) that satisfies the
following equations is a stationary point.

ai+A%:O aiwiﬁzo
0ox, Ox, 0ox, 0ox,

s

ﬁ+ﬂa—h=0, h(x,x,,%,)=0
ox,  Ox,

It is convenient to write these equations in terms of a Lagrange function, L, defined as

L(x,,x,,x;,A4) = f(x,%,,%;)+ Ah(x,,x,,X;)
VL(x,x,,x;,,A)=0

Constrained optimization problem is transformed to an unconstrained
optimization problem.

oL _of oh_ oL_of 0,
ox, Ox, ox, ox, Ox, 0Ox,

oL of oh oL J: Lagrange Multiplier
7:T+ﬂ‘7:0 7=h(x|’xzsx3):0 . L F H

ox, ox, ox oA ; L: Lagrange Function z

[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (1/5)

Optimization Problem

Minimize  f(X;,X,,X;) ) Number of variables: 3
Subjectto  /(x,,x,,x,)=0 = @

(X, %,,%) =0 = @

Number of equation: 2

Necessary condition that minimize f is df = 0.
df=0 corresponds to Eq. @' as follows.

s : : : N .
=L+ L 4+ Lt =0 @ Because ‘Minimize f” is
o, 2 o formulated as an equation
Subjectto A, (x,,%,,%,)=0 .. @ (df=0), the number of equations
(%, %,,05) =0 = @) is equal to th.e number of
unknown variables.

Number of variables: 3 (Determinate problem)
Number of equations: 3
» We can solve this.

. %

opics in Ship Design i Eall 2016, Myvung:Il Roh ’!dwlunn b“ 2
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[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (2/5)

Optimization Problem

Minimize  f(X;,X,,X;) )
Subject to h(x,%,,%)=0 = @
(X, %, %) =0 = @

Number of variables: 3

Number of equation: 2

Necessary condition that minimize f is df= 0.
df =0 corresponds to Eq. @' as follows.

4 N
df _ f f = = @’ <
0
. of
f d d | +——dx, + d =0 ... @'
Subject to h (xl,xz,xs) 0 @ If = 6xl ox, 5x3 @
h(x,x,,x)=0 -
(%), %5, %) ® |:> on E}hl o ,
dhy =M ax, dv, + v, =0 e @)
To find the relationships among dx,, dx,, dx;, o 6 ox;
we modify the equation ® and ® to the form .
of total derivative dh, and dh,. dh, :%dxl Y oh, dx, +—2dx3 =0 .. @
Ox, Ox, Ox,
- J -
opics in Ship Design i Fall 2016, _Mvung:Il Roh ’!dlﬂ lnﬁn bm 23

[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (3/5)

Optimization Problem f o of o, )
df = 3 dx, +6 dx, + > dx; =0 .. @'
X, X.
Minimize  f(x;,%,,X;) ® ——> ‘ ’
Subjectto , (x,x,,x5,) =0 = @ dh = Z” s, + gh'd +%d -y
X, X.
hz(xl,xz,x3)=() ® 2
oy, oh oh
dhy = 72 dx, + 2 dx, +—2dx, =0 ... 3Y’
k= ox, 6x +6x - ®
- J

7: Are the equation @’,@’, and @’ differential equations with respect to f, h,, and #,?
,e. Answer: If the problem were given as follows:

- Given: fdx+ fdx2+ fdxro O e+ Mg+ e o, O—hzczx LA
0ox, 0x, 0x, 0ox, 0Ox,

2
- Find: Function f, h,, h,
Then the equation @', @', and ®' would be differential equations.

However, the function f, h;, and h, (equation @, @, ®) are given and differential quantities of dx,, dx,,
and dx; are to find, the equation @', @', and @' are algebraic equations for the variables x,, x,, and x;.

opics in Ship Design i Eall 2016, Myvung:Il Roh ’ !dwlunnb“ 24
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[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (4/5)

Optimization Problem ( o 4 of h
—> U = G =0 @
] X,
Minimize  f(x;,X,,%;) - @ B
Subject to hl(xl’xz,)%) =0 e @ dh, = E)h, dx, + E)h, dx. +87h1dx3 =0 e @:
0 0 ox;
hz(XI’xz’x3)20 . @ X Xy X3
dh, = oh, dx, + oh, dx, +%dx3 =0 ... e’
ox, ox, ° Ox,
We multiply the equation @’ and ®’ by 4, and 4,, respectively N )
and add it to the equation @": * Since dx,, dx,, and dx, are not independent

because of the equality constraints 4, and #,.

df + Adh + Adh, =0
ﬁ>(af+ﬂ1ah‘+@aﬂd +[af +aZhs Azahl] [jfmg’“wgf}dxfo

X3
» Determine 4,, 4, so that » Determine 4,, 4, so that » Since dx, is an
the first term in the brackets the second term in the brackets independent variable
becomes zero*. becomes zero*.
(to eliminate dx,) (to eliminate dx,)
5 variables: (x, x,, x3, 4, , 4;) There exists a
5 equations: 2,3,4,5,6 unique solution. =

[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (5/5)

The point (x,, x,, x3, 4,, 4,) that satisfies the following
equations is a stationary point.

on, o on,

of Oh, Oh,
—+A4—+4—==0, —+A4—+ =0
6xl A 0ox, 4 6xl ox, A ox, &re ox,

ﬂ“ #0035 3005) =0, 50 3) =0

6x;

It is convenient to write these equations in terms of a Lagrange function, L, defined as

L(x,,%,, X, A, 4)) = f(x,%,, %)+ Ak (%, %y, %)+ A0, (X, X5, X3)

VL(x,%,,%,,4,4,)=0 J: Lagrange Multiplier
L: Lagrange Function

oL 6f oL of Oh Oh

A AT T AT =V e = A 1 2, 2 _ (g e

o oy il ax, +AZ ® ox, Ox, T ox, T ox, ®
oL

aL 6f j’l %%:0 @ a:hl(xlaxz,x}):o @

5x3 ox, 8x3 0x, oL

=h(%,%,,%) =0 = 3

The Lagrange function gives us a simple way of formulating the equations
that have to be satisfied at a stationary point.

2017-06-17
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[Example] Lagrange Multiplier for Equality Constraints| Quadratic programming problem
- Quadratic Programming Problem (1/2)

- Objective function: quadratic form
- Constraint: linear form

'| Original Problem I
Minimize f(x,,x,)=(x,—1.5)" +(x,—1.5)

Subjectto h(x,,x,)=x,+x,-2=0

-| Lagrange Function I

+A(x, +x,-2)

Minimize L(x,,x,,A)= f(x,x,)+Ah(x,,x,)
=(x—1.5) +(x,-1.5)

[=075

-| Necessary Condition: VL(x,,x,,1)=0 I—

S—L=2(xl—1.5)+z=o

X

f—Lzz(xfl.S)M:o
0ox,

Z—i:lerxsz:O

1

point.)

1 .
= x =x,=1,1" =1 (The point C is the stationary ‘Il ZNI()C X)= 0' X
%)=

opics in Ship Design Fall 2016, _Mvung:Il Roh
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[Example] Lagrange Multiplier for Equality Constraints| Quadratic programming problem
- Quadratic Programming Problem (2/2)

- Objective function: quadratic form
- Constraint: linear form

Original Problem

Minimize f(x)=(x,—1.5)> +(x, —1.5)’
Subjectto h(x)=x,+x,-2=0

\Minimize L(Xx, v)= f(X)+Vi(x)
=(x,—1.5 +(x, —1.5)]
+v(x, +x,-2)

Lagrange Function

-| Necessary Condition: VL(x",v")=0 I-

VI(x)+v'Va(x)=0
L =Vf(x)=v'VA(x")

2x, - 1.5) 1
Vf(X):[ } > Vh(X):H

2(x, —1.5)
-2(x; —L.5)=v", =2(x; -1.5) ="
X +x,-2=0

- xl* :x; =1,v" =1 (The point C is
the stationary point.)

X, T
A

Vf(X): The direction where f(x)
is increased

Vh(x) : The direction where /(x)
is increased

1 >
>
1 2\
0
Vf(D):L 73} h=0

At the candidate minimum C, the meaning of - V/(x') = v'Vi(x)is

The gradient vector of the objective function and constraint
are on the same line and proportional to each other, and the

Lagrange multiplier v* is the proportionality constant.

VV(C):{:i}, Vh«)::B}, V=1

But the point D is not a candidate minimum, because the
gradient vector of the objective function and constraint are

not on the same line.

2017-06-17
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[Example] Solving Nonlinear Constrained Optimization
Problem by Using the Lagrange Multiplier (1/4)

M There is a sphere whose center is (0, 0, 0) and radius is c.

M Determine the maximum volume of the rectangular solid which is
circumscribed* in the sphere.

(X)X, X;)

* To draw a geometric figure around another figure so that the two are in contact but do not intersect.

opics in Ship Design i Fall 2016, Myung:| 1l Roh ’ !dmlnﬁnbm 2

[Example] Solving Nonlinear Constrained Optimization
Problem by Using the Lagrange Multiplier (2/4)
M Mathematical Modeling

The volume of the rectangular sold fis
S(x,x,,x,)=2x,-2x, - 2x,
X3 Because the vertices of the rectangular
X, solid are on the surface of the sphere,
h(x,, %y, %) =x] +x; +x; —c> =0

(X7, %5, %3)

cf) equation for a sphere:x* +y* +z*> =r’

% &

Maximize f(x,,x,,x;) = 2x, - 2x, - 2x,

=8x,x,x
Subject to e
/2x h(x,,%,,%,) = x] +x; +x; —c> =0
’ S
2x Minimize f(x,,x,,x;) =—8x,x,x
3 1>%2>73 17273
Subject to
2x h(x,, Xy, %) =x] +x; +x; —c> =0
1

30
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[Example] Solving Nonlinear Constrained Optimization
Problem by Using the Lagrange Multiplier (3/4)

M Solution (1/2)

Minimize f (x,,x,,x,) = —8X,x,X,
Subject to

h(x,,X,,%,) = x] +x; +x; —c> =0

Lagrange function for this problem is as follow.
L(x;, %), %5, 4) = [ (x5 %), %) + Ah(x,, X, %3)

=—8x,x,%, + A(x) +x; +x7 —¢?)

SL =-8x,x; +A2x, =0 oL
VL(x,,%,,x,,A)=0 i

oL =-8xx, +A2x, =0

0Ox, ’ 0A

0Ox,

oL
—=x+x;+x-c"=0

=-8xx;+42x,=0

opics in Ship Design Fall 2016, _Mvung:Il Roh
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[Example] Solving Nonlinear Constrained Optimization
Problem by Using the Lagrange Multiplier (4/4)

M Solution (2/2) v, Axaxg
X = 1
1741
—dX, X X, =0 uation@xXy — =0 ! A |
8x,x, +A2x, =0 ® Eq @xp —8X,X,X; + 12X, .
4x,x,x; |
—8x,x; +A2x, =0 oo @ Equation-@=X3 —8X,X,X; + A2x; =0 ixj = 1; 3
1
— () e - 2 _ ! 1
—8x1x2 + 12)% =0 @ Equation @ x X3 —8x1X2x3 + ﬂzxg =0 ) 4)61)62)63 !
2, .2, .2 2 1X3 i
X +x5+x;—c =0 O S T A
! 2 3 , Substitute these into the equation @ [A ﬂ_’_ .
........................ Jee ettt eae e et eesteaneeaseepeeeaseeaneaateeaeeneaaneeaneaaneeneeaneeafgenE e oA e LR e R e e e e E s aE s eas e s s R sne s
\Z 24x7x,x ,
4xx,x,  Axx,x,  Axxx; —Bxyx, +—2==0 X =3
A A A c
3x} X =t—=
12655 _ . —8x,x, (1 ——cz' ] =0 : NG
A : EBecause x, is a length, it must be
: If x, or x; are zero 0, the i positive.
12x,x,%; : volume of the rectangular  :
2 A ® : solid is zero and the :x, and x; are found in the same way.
: solution is trivial. Therefore, :
Substitute the equation ® into : 3y : X = L’ X, = i’ X, = <
the equation @ P1-=L=0 BT BT B
12x,x,x : ¢ iSo, the maximum volume is
—8o,x; +—52x, =0 3x] -1 8¢
: 2 = P8 xx, =——=
c 14273 3\/5 =

2017-06-17
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[Summary] Constrained Optimization Method by Using
the Lagrange Multiplier

M Constrained Optimization Problem

Minimize f(X) — f(xl R x2 y eee o X ) - Determination of the propeller principal
n

dimensions by using the Lagrange multiplier

Subject to hl, (X) =0, i=1, ..., p Jrepprtarahlyd s spheaco
M Definition of the Lagrange function (L)
p
L(x,v)=f(x)+ Zvl.hl. (x) " h,
i=1 hy
=fO+vhe L

v; are the Lagrange multipliers for the equality constraints and are free in sign,
i.e., they can be positive, negative, or zero.

<Reason>
The solution does not change, even if the equality constraint is multiplied by the minus sign.
opics in Ship Design it Fall 2016, Myung:| ILRoh ’!dlﬂ lnﬁn bm 33

Comparison between Newton’s Method

and Method of Lagrange Multipliers

Newton’ Method for Unconstrained Optimization Problem
‘ Given: Minimize f(X)

Find: Local minimum point ‘

_________________

f(x +d)= f(x )+'Vf(x )T'd+'2d H(x' )dI+R

Necessary condition for \ .............. 1 ...... SR Sufficient conditions for x = -
x=x"to be a « Vf( ) d H(X )d > 0 *to be a local minimum
candidate local minimum "3l e

(stationary point)

Method of Lagrange Multipliers for Constrained Optimization Problem

Given: Minimize f(X) ‘ Find: Local candidate minimum point
h(x,,x,,%,)=0

df‘ + 2, . dh — O ﬂ,: Undetermined Coefficient ‘Lagrange multiplier’

Define Lagrange function, L =df + 1-dh

Necessary condition for x = x*

to be a candidate local minimum =» VL =0

(stationary point) 34

2017-06-17
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Inequality Constraints

Kuhn-Tucker Necessary Condition for

opics in Ship Design i Fall 2016, _Mvung:Il Roh

I!dlﬂb 35

Quadratic Programming Problem
with Inequality Constraint

Quadratic programming
problem

- Objective function: quadratic form
- Constraint: linear form

e can transform an inequality
constraint to an equality constraint by

‘a’ggiar:)gl;e? new variable, called the slack

Minimize f(x)=(x,—1.5)> +(x, —1.5)

Subjectto g(x)=x,+x,-2<0 /
» g(x)+s>=x +x, -2+

-| Lagrange Function I

Minimize L(X, u, s)= f(x)+ u[g(x) + sz]
=(x, - 1.5 +(x, - 1.5)

[=075

2 uoL
'_a%”:x1+xz—2+s :0,..5:214‘?:0' u>0
(1) If s=0, (Inequality constraint is transformed to the equality constraint.)
x, =x, =1L,u" =1 ® Candidate minimum point (The point C)
(2) If u=0, (Inequality constraint is not active.)

xl* = x; =1.5u"=0,5s> =—1 (The point D: the constraint is violated.)

+u(x, +x, —2+5%) — >
2N| g=05
-l Necessary Condition: VL(x", u’, s')=0] g=0
"""""" [N . .
1oL _ 2(x, ~1.5)+u =0, oL _ 2(x, ~1.5)+u =0 ! Linear indeterminate - At first, we find the
: X _a_’_‘; ___________________ , equation solution for the nonlinear
1oL " I Nonlinear indeterminate equation indeterminate equation of

u=0ors=0
- And substitute u=0 or
s=0 into the linear
indeterminate equation.
- Then, solve the linear
equation system.

2017-06-17
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Necessary Condition of Candidate Local Optimal Solution for
the Inequality Constrained Problem (1/2)

[Ref] Lagrange function for the equality constrained problem
P
L(x,v) = f(X)+ D vh(x) = f(x)+ V' h(x)

i=1
v; are the Lagrange multipliers for the equality
constraints and are free in sign.

Inequality constraint

g,(x)<0, i=1,..,m

To transform the inequality constraints to the equality constraints,
the slack variables s are introduced:

g (X)+s’ =0, i=1,..,m

Lagrange function for the inequality constrained problem

Since the inequality constraint can be transformed to the equality constraint by introducing
the slack variable, the Lagrange function is defined as

L0xu8) = (0 + (g, (x) +.57) = F(x) + 07 (g(x) +5°), 1,20

u; are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
s; are the slack variables to transform the inequality constraints to the equality constraints.

I!dlﬂb 37

opics in Ship Design Fall 2016, _Mvung:Il Roh

Necessary Condition of Candidate Local Optimal Solution for
the Inequality Constrained Problem (2/2)

Lagrange function for the inequality constrained problem
L(x,u,8) = f(x)+ D u(g,(x)+57) = f(x) +u’ (g(x) +5%)
i=1

where, u; are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
s; are the slack variables to transform the inequality constraints to the equality constraints.

The necessary condition of the candidate local optimal solution for the inequality
constrained problem

VL(x ,u’,s)=0

L 4
%Ei+zuj%:0, J=1, . ,n
ox; ox, T o
L ex)+s =0, i=1 ...m
Ou,
a—Lsu:s‘*:O, i=1,..,m
Os

38
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Kuhn-Tucker Necessary Condition for Inequality Constraints

Optimization Minimize f(X)=f(x,%,,"",x,)
Problem Subjectto h(x)=0, i=1..p Equality constraints
g,(x)<0, i=1..,m Inequality constraints
........................................................................... e
Definition of L(x,v,u,s) = f(x)+ ZVihi(x)+Zui(gi(x)+si2)
the Lagrange function =t =

T T 2
=f(x)+v h(Xx)+u (g(x)+s°)
v; are the Lagrange multipliers for the equality constraints and are free in sign.
u; are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
s; are the slack variables to transform the inequality constraints to the equality constraints.

Kuhn-Tucker necessary condition: VL(x,v,u,s)=0
h .
Z a aglzo, j=1, . un
J I

i = hr(X*) =0, i=1 ..,p If x* is the candidate local minimum point, the equations
ov, from the Kuhn-Tucker necessary condition have to be
a . " satisfied.
—=g,x)+s, =0, i=1,..,m Therefore, K-T condition can be used to find the
Ou, candidate local minimum point for the equality and
oL .. ] inequality constrained problem.
2 =us, =0, i=1..,m
1
ul* > O’ i=1, ... ,m The value of the objective function and gradient vectors have to be calculated a x*.

[Example] Nonlinear Constrained Optimization Problem #1
(1/2)

O) ®

Minimize [(X)=x"+x," =3x,x, SL =2x, —3x, +2ux, =0 -------- ®
X
2 2
= —6<
g =x"+x"-6<0 O o, —3x, 4 2ux, =0 ®
0x,
2 2 2 2
L(x, u,8) =% +x," =352, +u(x +x," —6+5%) Oi_xl +X," =645 =0,5"20,u20 -----m- ®

CASE #1: 1t = () (The inequality constraint is considered as inactive at the solution point.)‘

2x,—3x,=0 . . v x
! 2 ®» Point A: X, =0,x, =0, f(x,, x,)=0 L-v
-3x,+2x,=0

CASE #2: 5 = () (The solution point is on the boundary of the inequality
constraint. The inequality constraint is considered as active.)

Rearrange X, —3x, +2ux, =0, u=—l+222

the equation @

X "
Substitute X, =3x, +2(— 1+7 )x, =0
into 2 x
. Z 2
the equation @ 5, 3, 5y 432220, 32223y, 2=
Substitute x, % 5
into 2x> =6, x= +/3

the equation ®

20



[Example] Nonlinear Constrained Optimization Problem #1
(2/2)

2

CASE#1:u = () (The inequality constraint is considered as inactive at the solution point.) 1
2x,-3x,=0

-3x,+2x,=0

® Point A: X, =0, x, =0, f(x, x,)=0

CASE #2: 5 = 0 (The solution point is on the boundary of the inequality
constraint.)
1
X =x, =3, “=75 =PointB: X, = x, =3, f(x,x)=-3 5 37313

1 s o
X =x,=—v3, u=5 = Point C: x, :xZ:—\/g,f(xl,xz):—S

Vg

5 . . s \
X ==X, :\B, u :_E = Point D: x, =\/§»x2 :_\/gaf(xl »xz) =15

M:-@:ﬁ-3,u:-§»PMmE:ﬁ:—viﬁzzJifu;g):w

opics in Ship Design i Fall 2016, _Myung:Il Roh ’ !dmlnﬁnbm 4

[Example] Nonlinear Constrained Optimization Problem #2 Quadratic programming

- Find the Optimal Solution for the Quadratic Programming Problem P:f:'eff' fanction: quadratc f

by using the Kuhn-Tucker Necessary Condition : xi are free in sign (1/3)  Conetraint ncar form
X2

Minimize f(x)=x] +x; —2x,—2x, +2
Subjectto g,(X)=-2x,—x,+4<0 \
4

=—x — <
& (x)=-x,—2x,+4<0 2,=0 Minimum at Point A

X* :(%’%)’f(X*):%

Lagrange function
L(x,u,8) = x{ +x; —2x, —2x, +2 o

+u,(=2x, —x, +4+5])

Fut, (—x, = 2x, +4+57)

opics in Ship Design i Eall 2016, Myvung:Il Roh ’ !dwlunnb“ 42
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[Example] Nonlinear Constrained Optimization Problem #2
- Find the Optimal Solution for the Quadratic Programming Problem
by using the Kuhn-Tucker Necessary Condition : xi are free in sign (2/3)

Lagrange function

L(x,u,8) = X; + x5 —2x, —2x, +2

+u, (—2x, —x, +4+ slz)

+uy (—x, = 2x, +4+53)

@ | f(x)=x] +x; —2x,—2x,+2
g,(x)=-"2x-x,+4<0
2, (xX)=—x—-2x,+4<0

Kuhn-Tucker necessary condition: VL(x,u,s)=0

a—L:2x1 -2-2u,~u, =0
Ox,

a—L=—2xl —x,+4+s; =0
Ou,
a—L:Zu,sl =0

S

oL

—=2x,-2~u,—2u, =0

0ox,
o _
Ou,

oL =2u,s, =0
0s,

—x, —2x,+4+s2 =0

opics in Ship Design Fall 2016, _Mvung:Il Roh
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[Example] Nonlinear Constrained Optimization Problem #2
- Find the Optimal Solution for the Quadratic Programming Problem
by using the Kuhn-Tucker Necessary Condition : xi are free in sign (3/3)

Lagrange function

L(x,u,8) = X{ + X3 —2x, —2x, +2
1, (=2x, —x, +4+57)

Futy (=X, = 2x, +4+53)

g;=0 Minimum at Point A

X = (%’%)’f(X*) =3

Case #1: 5,=5,=0

x,=Llx,=%u=2g=-1
1 5272 5271 5282 5
It has to be nonnegative (g,).

 Case #4: u,=u,=0, (Point D)

X, =X, =

: Case #2: u,=s,=0, (Point B)

-6 s —_2 2__1
X =5:X =5,U =5,8 =73

3

7 1

It has to be nonnegative (g,).

 Case #3: u,=5,=0, (Point C)

6 1

e 122
x,=x,=Ls =5, =-1

Feasible region

i\l\xl

It has to be nonnegative (g,, g,).

4 u =u, :% (Minimum at Point A)

44
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[Example] Nonlinear Constrained Optimization Problem #3
- Optimum Solution for the Case that x; are "Nonnegative” (1/4)

Minimize f(x)=x] +x; —2x, —2x, +2 Y2
Subjectto g,(x)=-2x,—x,+4<0 \
8 (x)=—x, —2x, +4<0 # =0 Minimum at Point A
x20,x,>20 x = %,g),f(x*)=§
Minimum point: x" = (£,4), f(x") =2 i

Minimize f(X)=x] +x; —2x, —2x, +2
Subjectto g,(x)=-2x,—x,+4<0 7r Feasible region
g,(xX)=—x—-2x,+4<0
-x,<0,-x,<0 7

Inequality constraints whose form are “<™:
Introduce the slack variable.

Minimize f(X)=x, +x; —2x,—2x, +2
Subjectto g,(x)=-2x,—x, +4+s’ =0
2,(x)=—x, —2x, +4+s; =0

-x,+0] =0,-x,+5, =0

45

[Example] Nonlinear Constrained Optimization Problem #3 Quadratic programming

problem

- Optimum Solution for the Case that x; are "Nonnegative"” (2/4) - obiective function: quacratic form

- Constraint: linear form

X
Minimize f(X)= xl2 + xz2 —2x,—2x,+2 2

Subjectto ,(X)=-2x,—x, +4+5/ =0 ;
g (x)=—x,—2x, +4+5; =0

X, +6] =0,—x,+5; =0
Lagrange function
L(x,u,8,5,8) = x] +x2 —2x, —2x, +2

+uy (<2, — X, +4+5]) <

g = 0 Minimum at Point A

X =($.9./() =3

Hty (=X, = 2x, +4+57)
+4, (=X, + )+ &, (-x, +57)

Kuhn-Tucker necessary condition: VL(x,u,s,{,0) =

Zi:zxﬁzfzulfufgzo O oy —2—u—2u,~, =0

X, Ox,

a—L=—2xl—x2+4-¢—s12=0 a—L:—xl—2x7+4+s12=0

Ou, ou, :

oL

—=2u;s5,=0 ai: 2u,s, =0

S) 632

oL oL oL OL
—=8-x=0 —=8-x,=0 —=2£,6,=0 —=24,0,=0
ac, TN ac, h — X 05 16 a5, g6

46
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[Example] Nonlinear Constrained Optimization Problem #3
- Optimum Solution for the Case that x; are "Nonnegative” (3/4) - obiective function: quacratic form

Quadratic programming
problem

- Constraint: linear form

Kuhn-Tucker necessary condition: VL(x

%:2)617272;1]71427(1:0 %:zxzfzf"ﬁ*z“zfgz:o
1 2
ai:—le—x,+4+sf:0 a—L:—x172x,+4+s§:0
Ou, : Ouy i
oL
6T:2u's' =0 S—L:Mzsz =0
s, S,
%:5'2_)(1:0 -8 =x, :l %:522—;(2:0»622:% :l
6L1 Substitute 8L2 Substitute
L 2246,=0>2487 =0 ——=2416,=0->2£,6, =0
a5, 96, T u,¢,,8,20,i=1,2
Multiply 6, to the both sides. ~>777" = 7" 7

Multiply 6, to the both sides.

Kuhn-Tucker necessary condition: VL(x,u,s,{,8)=0

g—L:2x]7272u17u27§,:0 071‘:2)%*2*“1*2”2*;2:0

X, o,

ai:—le—x7+4+sf:0 ai:fx172x7+4+s§:0

Ou, ; Ou, i

oL oL

afSI:ZulSl =0 675‘2:214252 =0

26,x% =0 26,x,=0 U6 20,i=12

,u,8,,0)=0

47

- Optimum Solution for the Case th

[Example] Nonlinear Constrained Optimization Problem #3

Quadratic programming
problem

at X; are "Nonnegative" (4/4 - Objective function: quadratic form

- Constraint: linear form

Lagrangian function
L(x,u,s,§,0) = xl2 +x22 —2x,-2x,+2

+u, (2%, — X, +4+57)

Fty (—x, —2X, +4+57) :
X, x4+ (x4 82

Minimum at Point A

X = (4,49, /()=3

& =0

Case #1: 5,=5,=,=4;=0, (Point A)
Case #2: u,=s,=¢;=¢;=0, (Point B)
Case #3: u,=5,={,=£,=0, (Point C)
: Case #4: u;=u,=¢{;=£,=0, (Point D)

i Case #5: u,;=u,=x,=x,=0, (Point

It has to b
§i=¢,=-2 Szz =4,{,=-14 nonansegoati:e.
i Case #6: u,=s,=x,=x,=0, (Point E) Case #13: 5,=5,=(,=x,=0, (Point H)
X, =x,=0,5) =—4, % =0,x, =4,

: T
: Case #7: u,=s,=x,=x,=0, (Point

i Case #8: 5,=s,=x,=x,=0, (Point E)

Case #9: u,=s,=¢,=x,=0, (Point F)
x,=0,x,=2,u, =1,
N It has to be
S =—=2,4;, =—3  nonnegative.
1 Case #10: u,=5s,={;=x,=0, (Point G)

-6 —1 —2 2__1
XN =5 T5U =5,85 =75 B
It has to be nonnegative. X, =2,x, =0,u, =1,5, =2,

— —4 = =2
X=X =50 =8, =

It has to be
x =l x, =%y =2 SZ——i 2:*3 nonnegative.
1752 T st s Case #11: 5,=5,=¢;=x,=0, (Point G)

It has to be nonnegative.
X, =2,x,=0, .
The constraint is violated.

—x,—2x, +4+5; 20
Case #12: u,=5s,={;=x,=0, (Point H)

X, =0,x, =4,u, =6,

2 2
X =x,=Ls =5, =-1
Tt has to be E)ormegative.

— — 2_ 2
X =x,=0,5> =52 =4,
it has to be nonnegative.

7|t has to be nonnegative. 5 T:ie ccnzstraint is violated|
—x=2x,+4+s;#0 =X, T 2X, + A+, #
he Sonewaint s violated. Case #14: u,=s,=¢;=x,=0, (Point 1)

x, =4,x,=0,u, =6,
It has to be

2
8= 4, é’z =-14 nonnegative.
Case #15: u,;=u,={,=x,=0, (Point J)

2
X, =x,=0,5y =4,
- ﬂl( has to be nonnegative.
=2x,—x,+4+s5, #0

The constraint is violated.

2 =
X =0,x, =157 =-3,
It has to be

2
$5==2,8=-2  nonnegative.
Case #16: u,;=u,={;=x,=0, (Point K)

x =1x, :0,5,2 =-2,

X, =X, = 0,-2x, —x, +4+57 20,

2
—x,=2x,+4+s55, #0
The constraint is violated.
X
1 Ithastobe 5 48

nonnegative§, = 3,65 =
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6.2 Quadratic Programming (QP)

opics in Ship Design Fall 2016, _Mvung:Il Roh
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[Summary] Solution of QP Problem
Using the Kuhn-Tucker Necessary Condition

Minimize [f(X)= xl2 +x22 —2x,—2x,+2

Subjectto  —2x,—x, <-4 —2x,—x, +4+57 =0
—x —2x, <-4 » —x,—2x,+4+5 =0
x1>0,x2>0 _x]+5]2:0’_x2+522:0

Lagrange function
L(x,u,s,§,0)= X12 +x22 —2x,=2x,+2

+u, (=2X, = X, + 4+57) + 1y (—x, = 2x, +4+57)
+& (=%, + )+ &, (—x, +5;) where, 1,4, 20

Kuhn-Tucker necessary condition: VL(X,u,s,§,6)=0

Lo pan-2u—uy-=0, o on—u-2u,-¢, =0
0Ox, - 0ox,

L
a—L=—2x,—xz+4+s,2=0, 6fL=—X1—2xa+4+Szz=0 i=_xl+512:0
u, Ou, - o¢,

UL s, =0, L s, —0 L ars -0, % —ags -0 oL o +57=0
os, as, 06, a6, o, :

where, u,,{,,0,20

opics in Ship Design Eall 2016, Myvung:Il Roh
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Solution Procedure of Quadratic Programming (QP) Problem
- Approximate the Original Problem as a QP Problem

Minimize f(x+Ax)= f(x)+Vf" (x)Ax+0.5Ax" HAx
The second-order Taylor series expansion of the objective function
. T .
Subjectto h (x+Ax)=h;(X)+Vh, (X)Ax=0;j=1t0 p
) " The first-order(linear) Taylor series expansion of the equality constraints

gj(x+Ax);gj(x)+ngT(x)AxSO;j=1t0m

The first-order(linear) Taylor series expansion of the inequality constraints

inet f = f(x+Ax)~ f(x), e, =~h,(x), b, =~g,(x),

Defin
¢, =0of (x)/ox,, n; =0h,(x)/0x,, a; =0g,(x)/0x,,
d; = Ax,
Matrix form
: Quadratic objective function

- 1
.. . T T
Minimize [ =c¢ @amd,,,, +Ed n H )
Subject to NT(PX”)d(nxD =€) Linear equality constraints
AT(’"Xﬂ)d(nxn < b(mxl) : Linear inequality constraints

I!dlﬂb 51

opics in Ship Design Fall 2016, _Mvung:Il Roh

Solution Procedure of Quadratic Programming (QP) Problem

- Construction of Lagrange Function
d(nxl)

- 1
L T T
Minimize [ =c¢ wad,., +Ed wanH

. T
Subjectto N (pxnd, ..y =€,
T T 2 _
A (mx”)d(nxl) = b(mxl) » A (mxn)d(nxl) _b(mxl) +S(m><l) =0

Lagrange Function I

1
L=c (lxn)d(nxl) +5d (lxn)H(,,xn)d(nxl)

T T 2
AU o) (A" oy 8 () =D )

T T
TV (1xp) (N (px")d(nxl) - e(pxl))

ydlab -

opics in Ship Design Eall 2016, Myvung:Il Roh
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Solution Procedure of Quadratic Programming (QP) Problem
- Applying the K-T Necessary Condition to the Lagrange Function

| Lagrange Function I

1
T T
L(d,v,s,u)=c¢ (]x;z)d(nxl) + Ed (lxn)H(an)d(nxl)

T T 2
+u (IX’”)(A (mxn)d(/le)+s(nle) _b(mxl))

T T
+vVv (lxp)(N (pxn)d(nxl) —e(pxl))

| Kuhn-Tucker Necessary Condition: VL(d, v,s,u)=0 !

W = €y T H i iy + Ao Wty T Ny Vi) = 0
(%(;V’(i:;s)’u) = NT(pmd(nxl) —€, = 0

W = AT o) +s<mx1)2 ~b,ay =0
w:urgi =0, i=0tom

i

53

Solution Procedure of Quadratic Programming (QP) Problem
- Method 1: Direct Solving the Egs. from the K-T Conditions

Optimization problem Minimize f(X)=f(x,X,,+,x,)
Subjectto h;(x)=0, i=1..,p Equality constraint

..,m Inequality constraint

. W
Definition of L(x,v,u,8)= f(X)+ D v (x)+ Y u(g,(x)+5])
Lagrange function

i=1 i=1

v; are the Lagrange multipliers for the equality constraints and are free in sign.

u; are the Lagrange multiplier for the inequality constraints and have to be nonnegative.

s; are the slack variables to transform the inequality constraints to the equality constraints.

13 o =
1 LTSy S g et b | Methodt: _
1 O, &Y/ pr 6x, pr (')x, I - Flnd the §olutlons W.hICh satisfy the nonlinear
A | indeterminate equations.
1oL =h(x)=0, i=1 ..,p 1 - Check whether the solutions satisfy the linear
! ov, 1 indeterminate equations and determine the solution of this
oL N . 1 problem.
1 =g,(x)+s>=0, i=1, .. ,m | - Human can find the solution of this problem easily by
Vo e~ using this method.
Linear indeterminate equations
Ii—ufs': ,  i=1, ,m !
WL o :

Nonlinear indeterminate equations

u, 20, i=1, ..,m

opics in Ship Design i Eall 2016, Myvung:Il Roh ’ !dwlunnb“ L)
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Solution Procedure of Quadratic Programming (QP) Problem

- Method 2: Formulate the Problem of the K-T Condition as a LP Problem (1/3)

| Kuhn-Tucker Necessary Condition: VL(d, v,u,s) =0 i

~

oL oL
A =€y t H(nxn)dlnx]) + A(nxm)u(mxl) + Nlnx,})v(pxl) =0,
ad, ov

(px1)

L 530, i=0tome @ AT

(mxm) B (nx1) TS (mx1)

———=Npad

d_.+s, . —b

e 0

) "€y T

0

(mx1) =

Multiply s; both side of the Equation @

Although the Equation @ is multiplied by s,
the solution (u, =0 or s, =0) is not changed.

— 2
u,'s,' =0 » us,; =0

Transform Kuhn-Tucker Necessary Condition: VL(d,v,u,s) =10

au(m)

oL oL
ad =Cy t H(nxn)d(nxl) + A(mxm)u(mxl) + N(nxp)v(pxl) =0, 2
od ) 'V (px1)
oL i oL
) _ 1 _ AT 2 _
=us;1=0, i=0¢t0 m-m @ = A(mxu)d(HXI) S0y Py = 0

0

T
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Solution Procedure of Quadratic Programming (QP) Problem

- Method 2: Formulate the Problem of the K-T Condition as a LP Problem (2/3)

| Kuhn-Tucker Necessary Condition: VL(d, v,u,s) =0 !

oL oL T
ad = c(nxl) + H(uxn)d(nxl) + A(nxln)u(mxl) + N(le[l)v(pxl) = 0’ P =N (PX")d(nxl) _e(px]) =0
(nx1) V (px1)
oL i3 oL r oy
——=us = 0, i=0t0 m=m D' = A ey HS () Py =0
0s, - ou,y Lommms
i nx1)
.
Replace s; with S| (wheres/>0 )
) oL T '
T 1
: ad =€ T H(nxn)dinxlj + A(nxmju(mxl) +N(n><p)v(p><l) =0, oy =N (PX”)d(nxl) €)= 0 :
: (nx1) (px1) !
[P i i !
L oL
1 Y= — r_ L 1 1 _ T ’ _ 1
| o us;=0,i=0tom ! ! = Aty S0y =Py =0 !
I 1 1

indeterminate equations satisfies the nonlinear
indeterminate equations and determine the solution.

where, u‘.,S; >0;i=1tom

Linear indeterminate equations

____________________ ] o — ——— — ——— ——— — -
N " " Since these equations are linear in
Check whether the solutions obtained from the linear the variables d, s’, u, v, this problem

is a linear programming problem
only having the equality constraints.
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Solution Procedure of Quadratic Programming (QP) Problem
- Method 2: Formulate the Problem of the K-T Condition as a LP Problem (3/3)

| Kuhn-Tucker Necessary Condition: VL(d, v,u,s) = 0|

_________________________________________________________________________ -
oL oL r 1
ad =€y T H(nxn)dinxlj + A(nxmju(mxl) +N(n><p)v(p><l) =0, oy =N (PX”)d(nxl) €)= 0 :
(nx1) (px1) 1

i i

oL ! ! oL 1

| el — r_ L 1 1 _ T ' _ 1
| % us;=0,i=0tom ! ! ou = Aoty F Sy 7b(n_1><]) = 0 ) ]
LNonILlnear indeterminate equations : ! () Linear indeterminate equatlons_!

LSS o sy . i
- - - Since these equations are linear in
Check whether the solutions obtained from the linear the variables d, s, u, v, this problem
indeterminate equations satisfies the nonlinear is a linear programming problem
indeterminate equations and determine the solution. only having the equality constraints.

where u,,s; 20; i=1tom

Since the design variables d(n>< 1y are free in sign, we may decompose them as follows to use
the Simplex method.

d(nx]) = d;rnx]) _d(;7x|)a (d: 20,d720;i=110n)

Also, the Lagrange multipliers V.., for the equality constraints are free in sign, we may
decompose them as follows to use the Simplex method.

Vi) =Y (pxt) ~Z(px1)» (20,2, 20;i=1 to p)

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm s

Solution Procedure of Quadratic Programming (QP) Problem
- Method 2: Simplex Method for Solving a QP Problem (1/2)

Kuhn-Tucker Necessary Condition: VL(d,v,u,s) = 0|

1oL oL
] — —
=¢q +H d +A(t1><m)u(m><|)+N(rr><p)v(p><l) =0,

(mxm) 8 (nx1)

—NT —
=N lW")d(nxl) - e(px]) =0

— AT ’ —
= Aty F S () =Pty = 0

Linear indeterminate equations
Check whether the solutions obtained from the linear Since tt\ese equa‘tlons are.llnear in
h . N o " the variables d, §’, u, v, this problem
indeterminate equations satisfies the nonlinear

indeterminate equations and determine the solution. isa Imea_r programming problen_'n
only having the equality constraints.
where u,,s; 20; i=1tom

+ - + - R
Because d and v are d.,=di —di, (d 20,d; >0;i=1to n)
free in sign. - . .7 —
9 Vi) =Y () “Z(pys (3,20, 2,20;i=1 to p)
| Matrix From [a; 1)’
nx
H H A 0 N N, ] G
(nxn) - (nxn) (nxm) (nxm) (nxp) - (nxp) - c(/1><])
AT AT 0 0 0 Wy | b
(mxn) L& (mxn) (mxm) (mxm) (mxp) (mxp) s = (mx1)
T T (mx1)
Ny =Nl 0y Opmy Oy Oy | €
y(pxl)
L2 |
Introduce the artificial variables, define the artificial objective function, and solve the linear programming
problem by using the Simplex method. B
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Solution Procedure of Quadratic Programming (QP) Problem
- Method 2: Simplex Method for SoIving a QP Problem (2/2)

| Matrix From Introduce the artificial variables, define the artificial objective function, and

solve the linear programming problem by using the Simplex method.

"
d(nxl)
d, Y,
(nx1) 1
(nxn) _H(NXII) A(ﬂxm) 0(!1><m) N(n><p) _N(nxp) _c(nx])
AT AT, 0 0 0 Homy L = b
(mxn) X (mxn) (mxm) (mxm) (mxp) (mxp) s + . = (mx1)
T T (mx1) .
N(pxn) -N (pxn) 0<pxrn) O(PX”Y) O(NXN) O(Pxﬁ) e(pxl)
M) e p
| Z(x1) | Artificial variables

How to define the artificial objective function |

1. Define an one equation by sum of all the equations from the 15t row to (n + m + p)th row.
2. Define the sum of the all artificial variables (¥,+ Y,+ ... + ¥,..,.,) as an objective function ().

- Determine an initial basic feasible solution (to satisfy the artificial objective function (w) to be
zero) for the linear programming problem by using the Simplex method (Phase 1).

- Check whether the initial basic feasible solutions satisfy the following nonlinear
indeterminate equations and determine it as a solution.
oL
8—:1,4[5[_':0, i=0tom
S

1

Solution Procedure of Quadratic Programming (QP) Problem
- Summary of Method 2 of Simplex Method for Solving Quadratic Programming Problem

| Kuhn-Tucker Necessary Condition(Matrix form) |
B X

((n+m+p)x(2n+2m+2p))“ > ((2n+2m+2 p)x1) = D((n+m+p)><1)

| Simplex Method for Solving Quadratic Programming Problem

1. The problem to solve the Kuhn-Tucker necessary condition is same as the problem having only
the equality constraints (linear programming problem).

2. To solve the linear indeterminate equations, we introduce the artificial variables, define the
artificial objective function, and determine the initial basic feasible solution by using the Simplex

method.
D((n+m+p)><l)

B X + Y((n+m+p)><1) -
ied by -1 to have a nonnegative element on the right side.

((n+m+p)x(2n+2m+2 p))“ “((2n+2m+2 p)x1)

If any of the elements in D is (are) negative, the cor ion must be

3. The artificial objective function is defined as follows.

n+m+p n+m+p 2(n+m+p) n+m+p 2(n+m+p)
w= D ¥,= 2D= 3 XBX,=w+ 2CX,
i=1 i=1 Jj=1 i=1 J=1
n+m+p n+m+p

where Cj =— E Bij Wy = Z Di Initial value of the artificial objective function
= -t 7

X
Add the elements of the jth column of the matrix B and change its sign (Initial relative objective coefficient).

4. Solve the linear programming problem by using the Simplex and check whether the solution
satisfies the following equation.

uisi' = O’ 1= 1 10 m : This equation is used to check whether the solution satisfies this equation. =
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Solution Procedure of Quadratic Programming(QP) Problem
- Comparison between Method 1 and Method 2

Optimization problem

Minimize f(X)= f(x,x,,-,X,)

Subject to h‘.(X) =0, i=1,...,p Equality constraint

Definition of
Lagrange function

i=1,...,m Inequality constraint

L v,8) = £+ Y0+ (2,0 +57)

i=1 i=1
v; are the Lagrange multipliers for the equality constraints and are free in sign.

u; are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
s; are the slack variables to transform the inequality constraints to the equality constraints.

I===--, e
Ii o +Zv‘ah"+2u‘%‘=0, j=1 ..

1 O, _Tx, o, T o

oL .
:f—:h,(x):o, i=1, . ,p

o,
[ IS
1L g (x)+s?=0, i=1, .. .m
W o e e e e -
Linear indeterminate equations
oL” LT T T T T
IO—:u,A =0, i=1, ,m:
W oo -

Nonlinear indeterminate equations

u, 20, i=1,..,m

Method 1:

- Find the solutions to satisfy the nonlinear indeterminate
equations.

- Check whether the solutions satisfy the linear
indeterminate equations and determine the solution of this
problem.

- Human can find the solution of this problem easily by
using this method.

Method 2:

- Find the solutions to satisfy the linear indeterminate
equations by using the Simplex method.

- Check whether the solutions satisfy the nonlinear
indeterminate equations and determine the solution of this
problem.

- Since this method is more systematical, it is useful for the
computational approach.

61

6.3 Sequential Linear Programming
(SLP)
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(k+1) (k) (k)'\

Sequential Linear Programming (SLP) e ;ﬂ;j’*"’m

* Define the linear programming (LP) problem by linearizing the
objective function and the constraints at the current design point.

» Compute the design change by solving the linear programming
problem and obtain the improved design point.

X6 — x® 4 g®

ot

Improved Current Design change obtained by solving the LP problem.
design design
point point

* This method is to find the optimal solution by solving the linear
programming problem sequentially.

pics in Ship Design i Fall 2016, Myung:| 1l Roh ’ !dmlnﬁnbm 83

Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (1/6)

Minimize f(x)= xf +x; =3x,x,

1
Subject to gl(x)— )c1 +6x2 -1.0<0

g, (x)=-x,<0
g (X)=-x<0

X2

The starting design point: x'* = (1,1),
g =¢&,=0.001
8:,=0 47

Choose move limits such that a
15% design change is permissible. 3

The optimal solution: 2]

X' =(3,43), f(x") =3 v
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Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (2/6)

Minimize f(x)=x; +x; —3x,x,

1 1
Subject to  g,(x) =gx12 +gx22 -1.0<0

& (X)=-x,<0
g;(x)=—x,<0 &=0
(1) Iteration 1 (k = 0)

(i) Step 1

From the given point (starting point), the current design
point is as follows.

X =(L1), & =&, =0.001

(ii) Step 2: Evaluate the objective and constraint function at the current design point.
fa,n=-1
g (L1)==2<0 = Constraint is satisfied.
g,(LI)=—1<0 = Constraint is satisfied.
g;(1,L1)=—=1<0 = Constraint is satisfied.

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm L

Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (3/6)

Minimize f(x)=x; +x; —3x,x,

1 1
Subject to g, (X) :gxlz +g)cz2 -1.0<0

& (x)=-x<0

(1) Iteration 1 (k = 0) x = (L), ¢ =&, =0.001

(iii) Step 3: Define a LP problem (linearize the objective function).

The first-order (linear) Taylor series expansion
of the objective function

Minimize  f(x* + Ax*) = £(x*)+VfT (x©)Ax”

(k+1) _ (k) (k)
Minimize f(x(o) + Ax(‘))) _ f(x(‘))) ~ VfT(X(O))AX(O) X =x"+d

x® = [x ® (k)]r
1 2
O _q© vl | 2L o
‘ AX = d ,Vf = [8,\:| a :| d(,‘v) _ I:dl(k) dZ(A,)]T

d© ,
Minimize  f(x +d)~ f(x”) = [2x,-3x, 2x,-3x], L’]é(” “[Aan® Ar®]

@)= @2x" -3x)d® + (22" ~3x")d" < substitute x” =(L.1)
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Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (4/6)

Minimize f(x)=x; +x; —3x,x,

1 1
Subject to  g,(x) =gx]2 +gx22 -1.0<0

8 (X)=-x<0

g (x)=-x,<0 f
............................................................... T T 600
(1) Iteration 1 (k = 0) x” =(1,1),¢, =&, =0.001 A TEy X )

2=0
(iii) Step 3: Define a LP problem (linearize the constraints).

. T . The first-order (linear) Taylor series
Subjectto g 0+ = g,‘(x(o)) +Vg,/ (xNAx <0;j=110m I expansio(nI of tl?le c}clmstrairllts

8- D = ) 4 g®

Vg, (xMAx” < —g,(x"); j =110 m

b a0 vel [ B ] v (O = g (ax) = @)

Subject to o) { {
@)= [1x@ o) [ LoV 10
gl( ) [3)6' 3% :I{déb)} [6(x' ) 6(x2 ) | m e 2" gl(l’l):_%
_ (0) P (d)=L1d©® 41g® <20
gz(d(m) = |:7x1(0) 0 |:dl(()’:| < 7(7)51(0)) : gl( ) o o 3 : gZ (]‘7 1) = _1
4 g 12, =—d" <1 g (L) =-1
0 5 — 1 3
w0 ] ) fan(on)  Substutex? =00 gty —aa |
d The linearized constraints 7

Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (5/6)

(iv) Step 4: Solve the LP problem for the design change (d©).

- Linearize the objective .. 2 2
Minimize f = —dl - d2 function and constraints. | Minimize  [(X)=x; +x; —3xx,
1, 1,
. 1 1 2 Subject to X)=—x; +—x;, —1.0<0
Subjectto 1d +5d, <3 J & ((x) citeh
- =—x <
d <1 J0D=Lg D=3, 80 =% <0
-d, <1 gD =-Lg1h=-1 &:(x)=-x <0

1—0.15<d, <015 ||/ -Clebva 6D

Vg, =(=1,0),Vg, =(0,-1)
'_0.15<d, <0.15!
e 1

Limits must be imposed on changes

in design called move limit. The graphical solution for]

the linearized problem is
as follows.

f=—d,~d,=-03

C
.f—d,dz—ox

The design change

J/ ./(.a T/N&.
S
I
e
&
X
I
<
2

move limit —_/| N is obtained.
RN
K B d=1
To solve the problem, the Simplex method can be used. 5 d,sq=2
d=1 "~ 68
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Sequential Linear Programming (SLP)
- [Example] Problem with Inequality Constraints (6/6)

(v) Step 5: Check for convergence by using the obtained design change d©®.
d? = (d,,d,)=(0.15,0.15)
Since Hd(O)H =40.157+0.15> =0.212 > &,(=0.001), the criterion for convergence is not satisfied.

(vi) Step 6: Update the design point as x**)=x + d®. Set k= k+1 and go to Step 2.
X =x® =x©@ 1 d® = (1,1) +(0.15,0.15) = (1.15,1.15)

opics in Ship Design i Fall 2016, _Mvung:Il Roh
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Summary of Sequential Linear Programming (SLP)

o o e (k) )\ ~ (k) T oo (k) (k)  The first-order(linear) Taylor series
Minimize f(X +AX ) = f(X ) + Vf (X )AX expansion of the objective function

Subjectto h (x + Ax") = h (x“)+ Vh/.T(x“‘))Ax“‘) =0;j=1top

The first—order (linear) Taylor series expansion of the equality constraints

gj(x(k) +AxY) = gj(x(k))+ngT(x(k))Ax(k) <0;j=1tom

The first-order (linear) Taylor series expansion of the inequality constraints

T
n : A (mx")d(nxl) = b(mxl) constraint
z aijdi < bj;J =ltom » Linear Programming Problem
i=l :

(k) (k) (k)
where, d, <d, <d, (Ax,  <Ax,” <Ax, )

Define: [ = f(x+Ax) - f(x), ¢; =—h,(x), b, = —g,(x),
¢, =0of (x)/ox,, n; =0h,(x)/0x,, a; =0g;(x)/0x,,
dl = A'X:l
: Matrix form
_ n i _
. o . : . o o T
thmtze f = Zcidi : Mlnlmlze f =C (lxn)d(nxl) : Linearized objective
sy H function
n H
. . H . T _ . . .
Subject to Zn!./.d’. =e,;j= ltop Subject to N (pxn)d(nxl) =€, t;nnesi::it: equality
= : : Linearized inequality

» It can be solved by using the Simplex method.

70
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Summary of the SLP Method (1/2)

» Step 1: Estimate a starting design point as x©. Set k= 0.
Specify two small numbers, ¢, &, (criterion for violating
the constraints and convergence).

» Step 2: Evaluate objective and constraint function at
current design point x®. Also evaluate the objective and
constraint function gradients at the current design point.

» Step 3: Select the proper move limits Ax,® and Ax;,® as
some fraction of the current design point. Define the
linear programming problem.

Ax, " < A < Ax,

opics in Ship Design i Fall 2016, Myung:| 1l Roh ’ !dmlnﬁnbm 7

Summary of the SLP Method (2/2)

» Step 4: Solve the linear programming problem for d® by
using the Simplex method.

» Step 5: Check for convergence. If, g, < ¢, (/= 1 to m), |h] <
g (i = 1to p), and || d®|| < &, then stop and the current
design point x® is the optimal solution. Otherwise,
continue.

» Step 6: Update the design point as x**D=x + Ax®), Set k =
k+1 and go to Step 2.

opics in Ship Design i Eall 2016, Myvung:| 1l Roh ’ !dwlunnb“ 72
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Limitations of SLP Method

solution.

during iterations.

H B ”HH

limits.
f(x)a

Linearized objective fiynction

The move limits of the design variables should be defined by the user.
If the move limits are too small, it takes much time to find the optimal

If the move limits are too large, it can cause oscillations in the design point

Thus, the performance of the method depends heavily on selection of move

Original objective function

Linearized objective function

» The optimal solution cannot
be obtained, because of the
oscillations in the design
point during iterations.

x(ﬂ)
£0+2)

)

X
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6.4 Sequential Quadratic Programming

(SQP)

opics in Ship Design i Eall 2016, Myvung:Il Roh
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Sequential Quadratic Programming (SQP)

» Define the quadratic programming (QP) problem by approximating
quadratic form of the objective function and linear form of the

constraints at the current design point

= Compute the design change by solving the quadratic programming
problem and obtain the improved design point.

x** = X(k) +a, d(k)'\
T _T_ Design change
T Search direction obtained by solving the QP problem

Improved Current
design  design . .
point  point Step size obtained by minimizing the penalty function

* This method is to find the optimal solution by solving the quadratic

programming problem sequentially

2017-06-17
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Formulation of the Quadratic Programming Problem
to Determine the Search Direction

Define:  f
c
d l

Matrix form
. .. 7 _ T d ldT H d
Minimize [ =¢ () (nxty T A G TGy Q oy
: Linear equality constraints

. T
Subjectto N (pxnd,,,) =€,

T
A (mxn)d(,,xl) < b(mxl)

: Linear inequality constraints

Minimize f(x+Ax)= f(x)+V/" (x)Ax +0.5Ax" HAx
The second order Taylor series expansion of the objective function
Subjectto h (x+Ax) = h, (x)+Vh/ (x)Ax=0; j=1to p
The first- order (linear) Taylor series expansion of the equality constraints
g,;(x+Ax) = gj(x)+ng (x)Ax<0;j=1tom
The first-order (linear) Taylor series expansion of the inequality constraints

= f(x+Ax) - f(x), e, =—h,(x), b, =—g,(X),
= 3f (x)/0x,, n, = 0h,(x)/0x,, a, =g, (x)/dx,,

Quadratic objective function

ydlab -

i Eall 2016, Myvung:| 1l Roh
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| Optimalg ,
Eo\{t‘ion “Improved-design point | the current point.

Current design point Current design point

Objective function is approximated || Quadratic programming problem
i - Objective function: quadratic f
Procedures of SQP Method Lt e audrtc form i o o
" “w
Xz

X2
Step 1

Define the quadratic
programming problem at

Linearized constraint

N\

X1/ NG X

Go to the Step 1 at the
improved design point. Step 3 solving the quadratic programming

Step 2

Calculate the search direction (d®) by

problem.

o

» m{‘proved design_poift current value of the
A1) yo{ o objective function.

\ Transform the constrained
optimization problem to the xZT
unconstrained problem by
modifying the objective
function which has added
penalty for possible

constraint violations to the . P
Stopping criteria
If the magnitude of
the search direction

|d®| is smaller than a
small value (epsilon),
then stop.

Then calculate the step size
using the one dimensional

search method, e.g., Golden
section search method.

Y1) \_ xj n

Difference between Sequential Quadratic Programming (SQP) and
CSD (Constrained Steepest Descent) Method

M Sequential Quadratic Programming (SQP)

B @ First, we define a quadratic programming problem for the objective

function and constraints at the current design point, and find the search
direction d®.

@ We define the penalty function by adding a penalty for possible
constraint violations to the current value of the objective function, and
calculate the step size a, to minimize the penalty function. For
determination of the step size, one dimensional search method, e.g.,
Golden section search method can be used. And we determine the
improved design point.

® At the improved design point, we go to @.

The method is to find the optimal solution by solving the quadratic
programming problem sequentially.

M CSD (Constrained Steepest Descent) method

B This method is a kind of the SQP method.
B When defining the quadratic programming problem, the Hessian matrix

is assumed to be equal to the identity Matrix.

B This method uses the Pshenichny’s penalty function.

opics in Ship Design i Eall 2016, Myvung:Il Roh ’ !dwlunnb“ 8
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Solution Procedure of SQP Using the Example
- Determination of the Search Direction (1/5) [Iteration 1]

Subject to g,(X) = %xf Jréxz2 -1.0<0

g,(x)=-x,<0
g&(X)=-x,<0

Assume the starting point is X = (L1).

(1) Iteration 1 (k = 0)

(i) Step 1: Evaluate the objective function and
constraints at the current design point.

fan=-1

g,(1L1)=—2 <0 = Constraint is satisfied.

Minimize f(X)=x+x; —3x,x, Optimal solution: X = (\/§ A3 ), f(x')==3

g,(L1)=-1<0 = Constraint is satisfied.
g;(L)=—1<0 & Constraint is satisfied.

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm 79

Solution Procedure of SQP Using the Example
- Determination of the Search Direction (2/5)

Minimize f(x)=x{ +x] —3xx,

1
Subjectto g (x) :gx]z +gx2 -1.0<0

(1) Iteration 1 (k = 0) x” =(1,1)

(Ii) Step 2: Define a QP problem (The objective function is approximated to the quadratic form.)s

Frox/+xi-60=0

A7

Minimize £(x© +Ax?) = £(x”)+ V7 (x*)Ax? +0.5Ax V" HAX”

=0

Minimize f(x” +Ax?) - f(x?) = VfT (x)Ax? +0.5Ax " HAX”

... d(O)
Minimize  f(x” +d©) - f(x)=[2x 3%, 2x,-3x] L’l“” +0.5(d" +d\?)
2
@)= @3 =3x")d" + (25" ~3x5)dS +0.5(d" +di"?)
f@P)==d” -d” +0.5(d"” +d\"*)

Objective function is approximated 1
to the first order term.

Objective function is approximated to the second order term. 80
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Solution Procedure of SQP Using the Example
- Determination of the Search Direction (3/5)

f(X)=x +x; =3x,x,

-1.0<0

Minimize
1 1
Subjectto g,(X) = P X0+ gxzz

g (X)=-x<0

(1) Iteration 1 (k = 0) x” =(1,1)

Sxftxi-6.0=0

2:=0

Subject tog;(x” + AxV) = g (x?)+ Vg " (x”)Ax” <0; j =110 m The first-order (linear) Taylor series expansion

<=

ngr(x("’)Ax“” <-g, xP),j=1tom

‘ Ax©® = g

Subject to 0
g(d””) |:| (0) %xgmj'[ }

£,(d”):[ " 0]

g,(d™):[0 —x”]

0) r_[d% %
,\Vg; *[W T}

(0) -1 Oj

=

Substitute x* =(1,1)

of the constraints

The linearized constraints

1
V00 2 1
1 3d +ydy S
1 3
! (0) 1
: -d;” <1 \
1 —d® <1 H

81
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Solution Procedure of SQP Using the Example
- Determination of the Search Direction (4/5)

(iii) Step 3: Solve the QP problem to find (he search direction (d©).

Constrained Optimal Design Problem
(Original problem)

©)

L g 2 2
Minimize f(x)= x12 X —3xx, Minimize  f =(—d,—d,)+0.5(d; +d;)
1 (L) =-1Lg (L) =-3, i 1 1 2
Subject tog,(x) = xl += 6 x;-1.0<0 :j(lll,])):—llifl(ll.:):fl Subjectto 5d, +5d, <3
Vf = (-1-1),Ve, = (4.3), -d <1
&(X)=-x<0 Ve, =(-10).Ve, = (0D :
—d, <
(0=, <0 4, <1

Quadratic Programming Problem

" Kuhn-Tucker necessary condition: VL(d,u,s) =0

Lagrange function /

Ou

L=(-d, - d)+05(d2+d) Se=—l+d +iu —

+u[L(d, +d,—2)+57] Odz L=—l+d,+3u, -
+uy(—d, —1+53) L =1(d, +d,-2)+s =0
+u3(—d2—1+s32) ;’;L =—d, —l+s2

e=—d, ~1+s7 =

g:uisizo,uzo,l:1,2,3

The search direction is

u(O) = (ulauzauj.) = (09 03 0)5

= (5,,5,58;)
=(0,1.414, 1414)

u,=0

u, =0

0
0

* The search direction also can be
determined using the Simplex method. 82
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Solution Procedure of SQP Using the Example
- Determination of the Search Direction (5/5)

_______________ b The search direction is -
0) _ _ lgm e o
d” =(d,d,)=(, 1)]“ determined.

(iv) Step 4: After the search direction (d©) is determined,
calculate the step size.

&=0 ]
Calculate step size minimizing the value of the
objective function along the search direction 37
1) _ (O (0) ]
Tx = xT + aOdT P
Improved Current Search direction obtained from the QP — . .
design point design point problem " L \ P x;
Find ’
) ©, Loy = G, 103,14) = (0,0,0),
Find a,: Minimize f(X ) =f(X +a,d ) =f(a) 4 = (d,.d,) = (11)
—lj'Given:r

The improved design point can be found along the search direction by minimizing the objective
function. However, it may violate the original constraints.

Therefore, a penalty function should be constructed by adding the penalty for possible constraint
violations to the current value of the objective function.

By property of the nature, the objective function is decreased when the constraints is violated.

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm 8

Solution Procedure of SQP Using the Example
- Definition of Penalty Function (Pshenichny’s Descent Function) (1/2)

Penalty function (Pshenichny’s descent function, ®(x*))

By adding a penalty for possible constraint violations to the current value of the objective function,
the constrained optimization problem is transformed into the unconstrained optimization problem:

where, O(x") = f(x)+ R, -V (x?)
k: iteration number how many times the QP problem is defined approximately
f(x*): current (kth iteration) value of the objective function
V(x®) is either the maximum constraint violation among all the constraints or zero.
V(x®) is nonnegative. If all the constraints are satisfied, the value of the V(x®) is zero.

V(x“) = max {0;| ), |, --.|,

s|hlst s ;gl’gz’“”g»n}
where,

h,: value of the equality constraint function at the design point x®
g, value of the inequality constraint function at the design point x®

R, is a positive number called the penalty parameter.

R, =max{R,, r}

. . Summation of all the Lagrange multipliers
Initial value of R, is Y ! » or ’? uitiplier
specified by the user. _ (k) (k)
n= 33
i=1 i=1
v’““: Lagrange multipliers for the equality constraints (free in sign)

) - . . . .
Mf : Lagrange multiplier for the inequality constraints (nonnegative)

84
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Solution Procedure of SQP Using the Example
- Definition of Penalty Function (Pshenichny’s Descent Function) (2/2)

(v) Step 5: Calculate the penalty parameter R,.

(In this example, the initial penalty parameter is assumed as R)=10.)

P m i
) _ _ — (k) (k) — 0) _
u® = (upyty1,) = 0,0,0) and 7, = D[+ u =y u"=0
i=1 i=l i=1
Since this problem does not have the equality
Therefore, Ro = max {RO, ”b} = max {1 0’ O} — 10 constraints, we do not consider the v,
ToxY = F(xEV4 RV (x wy T L Lo 1o
:d)(x )=f(x")+R, -V (x) @) = () () -1 o]

()

»I g,(x) = x|

1
2, 2 k
i =x7 +x; = 3%, +10-V(x"), rx®) = max(0.6,:). 2.6 0,6), (k=0) RV !

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm L

Solution Procedure of SQP Using the Example

SX)= x4+ =3xx,

- Determination of the Step Size gL+ le 1os
5 £(0=-1,<0

(vi) Step 6: l—82=0 &(X)=-x,<0

By using the one dimensional search method, e.g.,

Golden section search method, 4

calculate the step size to minimize the penalty

function along the search direction (d©), 3

and determine the improved design point.

D) = F(xP)+ R,V (xP)

_ 22 ()
=X, +x, =3xx, +10-V(x*") ; , , .

1 2 3 4 \

X
g=0 1
V(x*) = max{0,g,(x*), g,(x*), g,(x*)}, (=0) !

After the k-th search direction is found, one dimensional search for the step
size is started.

dimensional search, k is

X(k»/') — X(k) + a(k j)d(k) [:> After completing the one
changed to k+1:

The iteration number k does not change during the one dimensional search for the step size.
(k (k+1)

x5 s changed to X

(7 ) = f (X )+ RV (X ),y (x0) — ma(0,,(x ), 2, x0), g, (x4}
*

The iteration number k does not change during the one dimensional search method.

ydlab =
‘opics in Ship Design is Eall 2016, Myvung:Il Roh ’ n
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Solution Procedure of SQP Using the Example

- Determination of the Step Size Using

the Golden Section Search Method (1/6)

(0 =x7+x2 =35,
1, 1,
g‘[x):gxl”i»gngl.(]ﬁ(]

2,(x)=—x, <0

Rﬂ = maX(Rﬂ”«:)}
=max{10,0} =10
u =y uy,,) = (0,0,0)

&(X)=-%,%0 5= —0
(vi) Step 6:
4'4
3’4
275
1
o« Xoo=1,1)
A
1 2 3 4 \ a=0 X
Search direction: d, = (L),  k=0,7=0 . ’
When & ;, =, =0.0 ?1 x09=(1, 1)
. |
x) =x00 = x© 4 Qo0 d =1L, +0-(1,1)=(1,1) i
|
0,00} _ (0,0) 0,0 _ _ !
O(x) = f(x )+ R,V (x*) ==1+10x0=~1 |
|
where, V(x") = max {0, g, (x”), g, (x "), &, (x"")} |
|
= max{0,-2,-1,-1}=0 :
|
A o a :5
Solution Procedure of SQP Using the Example f(x) =} +x} ~3xx, R, =max{R,.r;}
- Determination of the Step Size Using g\(x)=%xf+lgx§fl.ﬂsﬂ = max{10,0}=10
the Golden Section Search Method (2/6) ()= —x, <0 o= ) = (0.0.0)
= PRy R oL
2,=0
(vi) Step 6: -
4'4
3’4
275
17 “x(,m:(l.l, 1)
& oo 1) gi=xP+x7-6.0=0
A
1 2 3 4 \ o=0 X1
Search dir '
Assume ¢, =0.
xO =x©@ 4 Q) -d? =1, +0.1-(1,1) = (1.1,1.1)
O(x) = £ (xV)+ R,V (x*) ==1.21+10x0=~121
where, V(x'*?) = max{0, g, (x*"), g,(x*"), g,(x"*")}
=max{0,-0.57,-1.1,—-1.1} =0
* The initial value of ¢, ;(0.1) is given by the user. It can be given as
another value, e.g., 0.5. o
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Solution Procedure of SQP Using the Example
- Determination of the Step Size Using
the Golden Section Search Method (3/6)

f(x)=x2+x -3xx, R, =max{R,, 7}
=max{10,0} =10

g‘(x):le +lx;’ -1.0<0
66 u® = (u,.5) = (0,0.0)

2,(x)=—x, <0

e &) =—x,%0 o LY
(vi) Step 6:
4'4
34
f=-10
214 f=-3
xm.z)ql‘zaz‘, 1..20'2)
17 @ ay=(1.1, N
o Foo= LD g,=x7+x7-60=0
7 r T T
1 2 3 4 \ X
&=0

When @, =0.1+1.618(0.1) = 0.2618 @

-1
X =x@ g, -d” =(1,1)+0.262-(1,1) = (1.262,1.262) i

®(xO?) = £ (xOP)+ R, -V (x*P) = =1.592+10x0 = =1.592 1 59

where, V(xm’z)) =max{0, g, (x‘o'z)),g2 (x(o‘z)), g (x(o‘z))}
=max{0,-0.469,-1.262,-1.262} =0

-
A

Solution Procedure of SQP Using the Example
- Determination of the Step Size Using
the Golden Section Search Method (4/6)

iy

(vi) Step 6:

|.— 825

f(x) =7 +x; =33, R, =max{R,,7,}
=max{10,0} =10

am=te+ iz 10<0
6 6 U = Wy 10,,10,) = (0.0,0)

o,(x)=—x, <0

&(X) =%, 20 O L

3’4
275 X=(1.524, 1.524), f=-3
(1,262, 1.263.
17 8 xoy=11.ND)
& o= 1) gi=x2+x7-60=0
A
1 2 3 4 \ a-0 XI
Search direction: d, =(L1).  k=0,7=3 . '
When ¢, =0.1+1.618(0.1) +1 .618%(0.1)=0.5236 ‘ﬂ
x =x©@ 4 Q3 -d” =(1,1)+0.524-(1,1) = (1.524,1.524) a1
D(x) = £ (x)+ Ry -V (x ) ==2.321410x0 = -2.321 1502
]
1
where, V(x*) = max{0, g, (x*”), g, (x*?), g, (x*)} 2321 !
=max{0,-0.226,—-1.524,-1.524} =0 i
I
° —1- —— e
. 0.5236 @
A 0 0.1 t|518 g%
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Solution Procedure of SQP Using the Example
- Determination of the Step Size Using
the Golden Section Search Method (5/6)

1, 1,
g‘(x):gxl”i»gngl.(]ﬁo

2,(x)=—x, <0

Tim K- max{Ron)
=max{10,0} =10
u'” = (uy,uy,u5) = (0,0,0)

(vi) Step 6:

&(x)=-x,<0 o

o
i

3’4
f=-10
2 Hvany=1.524,1.524; f=-3
X2=(1.262, 1.263
17 /“x(.,,,,=(1.1, 1)
o Foo= LD g,=x7+x7-60=0
1 2 3 4 \ -y X
Search direction: d, =(1,1), k=0, j=4 &
................................................................................... The minimum point eists
When o, =0.1+1.618(0.1)+1.618°(0.1) +1.618°(0.1) D=, 1)|{he interval of uncertaint)
’ -1 xO042(1.947, 1.947)
=0.9472 -1.154 i 0.0=(1.1, 1.1)
1.21
x(0,4) = x(o) + a(0.4) . dw) = (1,1) +0.947- (1, 1) = (1 947, 1 947) E I‘ 02=(1.262, 1.262)
1590 |
O(xOY) = £ (xON)+ Ry -V (x*V) = -3.792+10%0.2638 = ~1.154 bl
2320 ) 0 |
| |
where, V(X(M)) =max {0, gl(X(OA)),gz(X(oM)s gs(x(o'4))} i i i i i
= max {0,0.2638,—1.947,~1.947} = 0.2638 L :
L -
A 0001 | 05236 09472 & B
0.2618
Solution Procedure of SQP Using the Example SX) =x7+x2 =3x,x,
- Determination of the Step Size Using a=te+le o<
the Golden Section Search Method (6/6) 6 6
i EEE————
g (x)=-x,<0

(vi) Step 6:

The value of the o, = 0.732 is found at which the

. . P 34
penalty function is minimized
in the interval between x'*? and x**. )
Axan=1.524,1.524
X0 =xO t g, 0 = (1,1)+0.732-(1L1) = (1.732,1.732)  priaaray®
17 % 0y=(1-1, i),
f(x(l)):f(l732,1732) :_3 d’x‘*"v"'é(l’” g =x/+x7-60=0
A
T T T T \
1 2 3 4 a=0 X
The minimum point e)'(ists.
o) x("’”’=(1, 1) (The interval of uncertainty)
1
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Solution Procedure of SQP Using the Example
- Determination of the Search Direction (1/3) [Iteration 2]

(2) Iteration 2 (k = 1)

(i) Step 1: Calculate maximum constraint violation of . 1, 1,
all the constraints. Subject to g, (X) et -1.0<0

From the previous stage,

x =(1.732,1.732)
S(xV)= 7 (1.732,1.732) = -2.999824

Minimize f(x)=x] +x2 —3x,x,

& (X)=-x<0
&(x)=-x,<0

g (X(l)) =g (1.732,1.732) =-5.866x10"  » Constraint is satisfied.
2, (X(l)) =-1.732 ®» Constraint is satisfied.
& (X(l)) =-1.732 ®» Constraint is satisfied.

V= V(x(l)) = max{0;-5.866x107°,-1.732,-1.732} =0

And,

VF(x") = (2x, —3x,,2x, —3x,) = (-1.732,-1.732)

Vg, (x")=(x,,4x,) =(0.577,0.577),Vg, = (-1,0),Vg, = (0,-1)

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm 83

Solution Procedure of SQP Using the Example| auzricrrosramming probiem

- Objective function: quadratic form

- Determination of the Search Direction (2/3) ===

(ii&iii) Step 28&3: Define and solve the QP problem to determine the search direction (d™).

Constrained Optimal Design Problem Quadratic Programming Problem
(Original problem) B
Minimize f(x)=x]+x2—3xx, Minimize f =(-1.732d,-1.732d,)+0.5(d} +d;
Subject to ¢,(X) = - x* + 122 1,020 Subject to 0.577d,+0.577d, <5.866x10°
6 6 f(1.732,1.732) = =3,V = (-1.732,-1.732) -d, <1.732 where.
g (X)=-x,<0 2,(1.732,1.732) = -5.866x10~*, Vg, = (0.577,0.577) —-d, <1.732 d=x '71 732
X)=—x <0 2,(1.732,1.732) = —1.732,Vg, = (-1,0) o ’
&) ' 2,(1.732,1.732) = —1.732,Vg, = (0,-1) dy=x,-1.732
® --------------------------------------------------------------------------------------
Lagrange function < - Kuhn-Tucker necessary condition: VL(d,u,s) =0
L=(-1.732d,-1.732d,) +0.5(d} +d}) , The search direction is
)

b2 1.7324d,+0.57Tu, —u, =0 }
+1,[0.577(d, +d,)—5.866x107° + 5] | ‘ : d" =(d,.d,)

P =—1.732+d, +0.57Tu, —u; =0 -
| d, 2 1 U =(5.081x107",
+u,(—d, —1.732+7) L 0577(d — .
) {2 =0.577(d, +d,)~5.866x107 +5; =0 5.081x107)
+uy(—d, —1.732+53) : o _
| L=—d -1.732+5] =0 ut = (s, ;)
: =(3,0,0)

sV =(s,,5,,53)
=(0, 1.316, 1.316)

* The search direction also can be
determined using the Simplex method. 94

uy
| =—d,-1.732+5]=0
oL

L=us,=0,u20,i=1,23
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Solution Procedure of SQP Using the Example| auzrecrrosramming probiem

- Objective function: quadratic form

- Determination of the Search Direction (3/3) ===

(iv) Step 4: Check for the following stopping criteria.
d" =(d,,d,)=(5.081x10", 5.081x107)

= J(5.081x10° ] +(5.081x10° ] =7.186x10° < &,(= 0.001) The stopping criteria i

satisfied.

(v) Step 5: Stop the iteration.

The candidate minimum solution: X = (ﬁ,ﬁ),f(x*) =-3

where the Lagrange multiplier are:

"=(3,0,0)s =(0, 1.316, 1.316)

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm s

Summary of Sequential Quadratic Programming (SQP)

Optimization Problem
Minimize f(X)=f(x,%,,"+,x,)
Subjectto h(x)=0, i=1,..,p Equality constraints

g,(x)=0, i=1,..,m Inequality constraints
Psher"chnv s descent function: the penalty function is constructed by adding a penalty for possible constraint violations to
he current value of the objective function

k k

(I)(X( )) f(X( )) + R V(X( )) (k is the iteration number how many times the QP problem is defined.)
V(x®) is either the maximum constraint violation of all the constraints or zero.
V(x®) is nonnegative. If all the constraints are satisfied, the value of the V(x®) is zero.

V(X gZ’“"gm}
R, is a positive number called the penalty parameter (initially specified by the user).

R, max{Ro, r(= Z‘ “‘)‘+Zu("))

\ Summatlon of all the Lagrange multipliers

The improved design point is determined as follows:
X(k+1) — X(k) +a, _d(k)
Improved Current - Search direction obtained from the QP problem

design point design point

Step size calculated by one dimensional search method e
(ex. Golden section search method)
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6.5 Determine the Search Direction of
the Quadratic Programming Problem
by Using the Simplex Method

I!dlﬂb 97

QDiC;

in Ship Design i Fall 2016, Myung:| 1l Roh

Formulation of the Quadratic Programming Problem (1/5)

Q p ing problem

- Objective function: quadratic form
- Constraint: linear form

Solve the QP problem to determine the search direction (d©®).

Quadratic Programming Problem

f=(~d,~d,)+0.5(d} +d?})

1 1 2
3d +3d, <5

Constrained Optimal Design Problem
(Original problem)

Minimize f(x)=x{+x; —3x,x,

L,

Minimize

Subject to

Subject to g,(x)=lx12+fx2 -1.0<0
6 6 -d, <1
=-x,<0
gZ(X) XI _dZ Sl where
g (x)=—x,<0 di=x -1, dy=x,-1

Lagrange function ¢ —
L=(~d,~d,))+0.5(d} +dy) &==1+d +5u-u,=0

+u[i(d +d,-2)+s'] \ L=-1+d,+Iu,—u,=0
+uy(=d, —1+s;) g::;(d1+d2—z)+sf:0
+ity(~d, ~1+57) L=—gd—1+s5,=0

L =—d —1+s5:=0

Ouy

Kuhn-Tucker necessary condition 4,

oL _ — P —
& =us;=0,1,20,i=123
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Formulation of the Quadratic Programming Problem (2/5)

Kuhn-Tucker necessary condition

Quadratic Programming Problem

L=—l+d +u —u, =0

f (d
T ~ L
Minimize f=(—d,—d,)+0.5(d} +d;) X 1edys im0
Subjectto +d, +41d, <3 v 2
s = 4(d, +d,-2) 57 =0
-d, <1 E:_d_l“'sz—()
te=—d, ~1+s7=0

L—ys,=0,u,>0,i=12,3 lf‘>u,s,2 =0,u,20,i=1,2,3
Multiply the both side of equations by s;

Kuhn-Tucker necessary condition
§L =—1+d +iu —u,=0

od,

=—1+d,+5u,—u; =0

u/z

Replace s? with s’

Represent s;’ to u/,
:L(d +d, —2)+s,’ -0 s; for the

Kuhn-Tucker necessary condition

L——1+d +5u,—u,=0

od,

e =—l+d,+3u, —u; =0

=1(d,+d,-2)+s =0

_— -
s2=5'>0 } convenience =
o 5o =—d,—l+s; =0 to=—d —1+s,=0
L=—d,~1+s; =0 Lod,~1+s,=0
éT:ufsizo éT:uISI’:O
u,s'20,i=1,2,3 u,s, 20,i=1,2,3 %
Formulation of the Quadratic Programming Problem (3/5)
] ___________________TT___I
Quadratic Programming Problem Kuhn- Tucker necessary condition !
_ ., L= —1+d +3u,—u, =0 !
Minimi; =(~d,~d,)+0.5(d} +d '
inimize f = 2)+0.5(d +d;) 2= l4d, +tu, ~u, =0 |
Subjectto +d ++d, <2 !
d <1 L=i(d+d,=2)+s =0 |
—d < '
—d, <1 =g —1+s,=0 |
1
Matrix form Le=—d,~1+5,=0 |
b 1
L-ys, =0 '
' 1
L 2 1 u,s5,20,i=12,3 !
Minimize  f = CT(lxz)d(N) + EdT(M)H(zxz)d(zXn _____ v e !
: T How can we express the Kuhn-
Subjectto A (3x2)d(2x1> < b(3xl) Tucker necessary condition in
Assume that H,,,, is equal to .., . matrix form (d, ¢, H, A, b)?
Ry N < g i C \
' d d, -1 H 1 0,
where, 1 d,, ;) = »Coouy = sH (g0 = 51
: (2x1) dz (2x1) -1 (2x2) 0 1 :
1 1
1 2 1
| -1 0 } i
' A(2><3) 10 -1 ab(le) 1 '
1 3 1
1 1 1
N St L N 100

2017-06-17

50



2017-06-17

Formulation of the Quadratic Programminge.., [ e.. | [n...-|; |}
Problem (4/5) o [

Kuhn-Tucker necessary condition [T £ SRR
L =01 d, + Ty ~u, =0 E{*Hdﬁ%”f%} |
o N B S AR ST ;
aTld i - =00 e ;
B I Lo o
L=ii(d+d,=2)+s, =0 o el I R K IR B S u |t
" -0 1la ] [E 0 - ;
fe=-d —1+s,=0 b | ’ ]
oL :_dz 1+ s =0 E :l:c(2><l)+H(2><2idlel)+A(2><3)u(3><1) =0 ]
Ouy 23 N e
oL — -
& =S, =0 i L(d, +d,-2)+s, 1ot R 2
u,s,20,i=1,2,3 : ~d,~l+s, |=|-1 0 [d‘}r s, |- 1
L __> -
~d, 1+, L0 -1]-7 |5 |1
= Ar(sxzyd(zm +8Ga) _b(3xl) =0

Matrix form
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Formulation of the Quadratic Programming Problem (5/5)
In order to use the Simplex method, we decompose into two variables, because the design
variables d are free in sign: + -
@xn 9 d(le) = d(le) _d(le)
Kuhn-Tucker necessary condition in Matrix form: VL(d",d",u,s) =0
+
d(le)
Hoo) | ~Hoo) | Acg | Qo) | daa || ~Cen)
T ' T ' ] -
Al | —A ) | 0(3x3) i I(3x3) Uz, b(3x1)
= B(5><10) Sy = D(le)
=X(10><1) 5
d; d; -1 1 0 L -1 0 3
where, d(+2><]) _|: 1+:|7d(2x1) _{ ]_}c(le) :{ :|7H(2x2) :|: :|:A(zx3) = {3 :|>b(3x1) =|1
d; d, -1 01 L0 -1 |
10 -1 0i0 00
0 1.0 10 -110 0 0
Bisao =| 3 %_% 3 0 051 00
-1 0i1 0i{0 0 0i0 1 0
0 =10 1i0 0 0i0 0 1
X' 0y =[d1+ dy di dy w o ou, u; s s, s3],DT(1x5) =11 21 1] =
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Formulation of the Quadratic Programming Problem
to Find the Search Direction by Using the Simplex Method

| Kuhn-Tucker necessary condition (matrix form) |

B(sxlo)X(loxl) = D(5><1) P

1

dy

_dl’

Lo -1 0 410000 |
01 0 -1+ 0 -1 000 |1
o1 1 19 0 0 10 0]"|=2
33 3 u 3
-1 0 00 0 0 01 0f | |1
0 -1 0 1 .00 0 00 1| |1
S

S,

_S3_

1

We want to find.
® This problem is to find X in the linear programming problem only having the equality
constraints.
®» 1.5, =0; i =1 to 3: Check whether the solution obtained from the linear indeterminate
equation satisfies the nonlinear indeterminate equation and determine the solution.
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Determine the Search Direction by Using the Simplex Method
- Iteration 1 (1/6)

Simplex method to solve the quadratic programming problem |

1. The problem to solve the Kuhn-Tucker necessary condition is the same with the problem having
only the equality constraints (Linear Programming problem).

2. To solve the linear indeterminate equation, we introduce the artificial variables, define the
artificial objective function, and then determine the initial basic feasible solution by using the

Simplex method.
B X + Y(le) = D(le)

Artificial variables

(5x10)“X(10x1)

3. The artificial objective function is defined as follows.

5 5 10 5 10
w= Z]:Y = Z}D,. =Y BX, =w,+ Z;Cij
i= i= Jj=

j=1i=1

..+ Add the elements of the jth column of the matrix B and change the its sign
v (initial relative objective coefficient).

5
where C/ = —ZB
' i=1

5
Wy = E D =1+1+24+1+1=2 :initial value of the artificial objective function
i 3 3 . .
-1 (summation of the all elements of the matrix D)

4. Solve the linear programming problem by using the Simplex and check whether the solution
satisfies the following nonlinear equation.
us, = 0; i =1 to 3: Check whether the solution obtained from the linear indeterminate equation

satisfies the nonlinear indeterminate equation and determine the solution. T
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Determine the Search Direction by Using the Simplex Method

- Iteration 1 (2/6) (= X))
o
1 0 -1 0 £ -1 0 00 0] Z[(f?) Y,
01 0 -1 41 0 -1000 2((7)(4)) Y,
u, (=
— 1 L _1 _1 90 0 01 00 1 5 Y. |=
B(5x10)X(10x1)+Y(5x1)—D(sxl) » o0 B uy(= X,) G
— 10 1 000 00O0T10 Y,
Artificial variables 0 -1 0 1 0 0 0 0 1]%BEXD Y,
| s(=Xy)
5,(=X,)
Define the artificial objective function for using the Simplex method: L= %)

Sum all the rows (1~5): 2 X +3X, -1 X, -1 X, + 2 X, - X, - X, + X, + X, + X}, + Y, + Y, + 1, + ¥, + ¥, =1

Express the artificial function as

w and rearrange:

[1]

w

X I X X RN X X - X - X - X = e

X1 X2 X3 X4 X5 X6 X7 | X8 X9 | X10 | Y1 Y2 Y3 Y4 | Y5 bi bi/ai
Y1 1 0 -1 0 1/3 | 0 0 0 0 1 0 0 0 0 1
Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1
Y3 1/3 [ 1/3 | -1/3 | -1/3| 0 0 0 1 0 0 0 0 1 0 0 2/3 2/3
Y4 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1
A.Obj. | -1/3|-1/3 [ 1/3 | 1/3 |-2/3| 1 1 -1 -1 -1 0 0 0 0 0 [w-14/3

Artificial oﬁjective

function

—_ e —m

Sum all the elements of the row and change the its sign (ex. Row 1: -(1+0+1/3-1+0)=-1/3) 105

Determine the Search Direction by Using the Simplex Method
- Iteration 1 (3/6)

2}

X1 X2 X3 X4 X5 X6 X7 X8 X9 | X10 | Y1 Y2 Y3 Y4 Y5 bi bi/ai
Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1
Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1
X8 1/3 | 1/3 | -1/3[-1/3] 0 0 0 1 0 0 0 0 1 0 0 2/3
Y4 =l 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1
Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1
A.Obj. [ 0 0 0 0 -2/3 1 1 0 -1 -1 0 0 1 0 0 w-4
E X1 X2 X3 X4 X5 X6 X7 X8 X9 | X10 | Y1 Y2 Y3 Y4 Y5 bi bi/ai
Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1
Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1
X8 1/3 | 1/3 | -1/3[-1/3] 0 0 0 1 0 0 0 0 1 0 0 2/3
X9 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1
A. Obj. [ -1 0 1 0 -2/3 1 1 0 0 -1 0 0 1 1 0 w-3
E X1 X2 X3 X4 X5 X6 X7 X8 X9 | X10 | Y1 Y2 Y3 Y4 Y5 bi bi/ai
Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 1
Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1
X8 1/3 | 1/3 | -1/3[-1/3| 0 0 0 1 0 0 0 0 1 0 0 2/3 2
X9 =l 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
X10 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1
A. Obj. [ -1 -1 1 1 -2/3 1 1 0 0 0 0 0 1 1 1 w-2

106
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Determine the Search Direction by Using the Simplex Method
- Iteration 1 (4/6)

E X1 X2 X3 X4 X5 X6 X7 X8 X9 [ X10 | Y1 Y2 Y3 Y4 Y5 bi bi/ai
X1 1 0 1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1
Y2 0 1 0 <A 1/3 0 1 0 0 0 0 1 0 0 0 1 1
X8 0 1/3 0 -1/3 | -1/9 | 1/3 0 1 0 0 -1/3 1 0 1 0 0 1/3 1
X9 0 0 0 0 1/3 -1 0 0 1 0 1 0 0 1 0 2
X10 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1
A.Obj. [ 0 -1 0 1 -1/3 0 1 0 0 0 1 0 1 1 1 w-1
E X1 X2 X3 X4 X5 X6 X7 X8 X9 | X10 | Y1 Y2 Y3 Y4 Y5 bi bi/ai
X1 1 0 1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1
X2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1
X8 0 0 0 0 -2/9 | 1/3 | 1/3 1 0 0 -1/3 | -1/3 1 0 0 0
X9 0 0 0 0 1/3 -1 0 0 1 0 1 0 0 1 0 2
X10 0 0 0 0 1/3 0 -1 0 0 1 0 1 0 0 1 2
A.Obj. [ 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 w-0

Since the value of the objective
function becomes zero, the initial
basic feasible solution is obtained.
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Determine the Search Direction by Using the Simplex Method
- Iteration 1 (5/6)

E P X3 : X7 X8 4 X9 X101 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X1 1 0 1/3 1 0 0 0 0 1 0 0 0 0 1
X2 0 1 0 1 1/3 0 1 0 0 0 0 1 0 0 0 1
X8 0 0 0 0 2/9 | 1/3 | 1/3 1 0 0 -1/3 | -1/3 1 0 0 0
X9 0 0 0 0 1/3 -1 0 0 1 0 1 0 0 1 0 2
X10 0 0 0 0 1/3 0 -1 0 0 1 0 1 0 0 1 2
A.Obj. [ 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 w-0

Since the value of the objective function
] becomes zero, the initial basic feasible
§3 solution is obtained.

X (1x10) = [dl+

Basic solution:
X =1 X,=1, X;=0, X,=2, X,;=2

Nonbasic solution:
X,=X,=X;=X,=X,=0
This solution satisfies the nonlinear indeterminate equation (X, .X,,, =0;i=5707,X,>0;i=11010)
So, the optimal solutionis d, =d, =Lu, =u, =u; =0,s, =0,s, =5, = 2.
®» Caution: In the Pivot step, if the smallest (i.e., the most negative) coefficient of the artificial objective

function or the smallest positive ratio “b/a,” appears more than one time, the initial basic feasible solution
can be changed depending on the selection of the pivot element in the pivot procedure.

» We have to check the solution until the nonlinear indeterminate equation (u; x s;= 0) are satisfied.

108
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Determine the Search Direction by Using the SimplexWMethéd:xlf*xHxlxz
- Iteration 1 (6/6) Subject 10 8,(3)= 37 + o3 =100

&) =-X S0
g(X)=-x,<0
The optimal solution for this problem is d, =d, =L, u; =u, =u; =0,s, = 0,5, =5, = 2.
Why are the values of u, and s, are zero at the same time?
Quadratic Programming Problem
Minimize  f =(~d, —d,)+0.5(d} +dJ)
Subject to %dl +%d2 < %
—dl <1 d2 Zero at optimum
~d, <1
This example is graphically represented in the right side.
Sl = O e

L(x,v,u,8)= f(x)+ iu, (g,(x)+s))

However, fortunately, the optimal solution is on
the linearized inequality constraint (g,(x), d,+d,=2).

Uy =y =0——

The optimal solution is in the region satisfying the inequality constraints
of d,=-1>0, d,=-1>0 which are inactive.

u=0——

The optimal 1 is on the i y constraint (g;(x)) and is equal to th
optimal solution of the objective function to be approximated to the second
order. Therefore, although we do not consider the inequality constraint g,(x),
the optimal solution of QP problem is not changed. That is, g,(x) does not
affect the optimal solution of this problem.

SO =37 437 =3xx,

Determination of the Step Size Using -

7le —x;-1.0<
the Golden Section Search Method s rgn o

i EE————
&M =5, <0

The value of the ¢, = 0.732 is found at which the
penalty function is minimized

in the interval between x'*? and x*%.

4 X(03=(1.524,1.524)

XV =x© 4, -d® = (1,1)+0.732-(1L1) = (1.732,1.732)  [prazerzy®
1 O\ L.
x")= £(1.732,1.732) = -3 1 At

. . s 'S

T T T T
1 2 3 4 \

The minimum point exists.

£=0 X1

) ' 00=(1, 1) (The interval of uncertainty)
1) X041(1.947, 1.947)
-1.154| |
-1.21 }
| |
1592 ||
o
o
I
i?)f):) Db A xeos(173241.732)
=3 | ! | | |
I
: : : : 1 I
1 | | 1 I
; | I7 L | |
A 0001 | 05236 9732 09472 @ B
0.261 1
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Determine the Search Direction by Using the Simplex Method
- Iteration 2 (1/10)

Quadratic pi ing problem
. . . - Objective function: quadratic form
Solve the QP problem to determine the search direction (d©®). - Constraint: linear form
Constrained Optimal Design Problem Quadratic Programming Problem

(Original problem)

... - 2 2
Minimize f(x)= x]z +x22 ~3x, Minimize f=(-1.732d,-1.732d,)+0.5(d;} +d,

Subject to 0.577d,+0.577d, <5.866x107°

1
Subject to g,(X)=—x; +gx22 -1.0<0

6 [(1.732,1.732) = =3,Vf = (-1.732,-1.732) -d <1.732 where
g2,(xX)=-x,<0 &(1.7321.732) = -5.866x10°,Vg, = (05770570 _ 4, <1.732 d—x 1732
2 1 =594
X)=—x <0 2,(1.732,1.732) = 1732, Vg, = (-1,0) ~
() ! 2,(1.732,1.732) = —1.732, Vg, = (0,-1) d,=x,-1.732

Kuhn-Tucker necessary condition: VL(d,u,s) =0

Lagrange function
L=(-1.732d,~1.732d,)+ 0.5(d; +d;) | &= _1.732+d,+0.57Tu, ~u, =0

od,
+1,[0.577(d, +d,)~5.866x107 +57] L= -1.7324d, +0.57Tu, ~u; =0
+iy(~d, ~1.732+53) 2L -0.577(d,+d,)-5.866x10° +57 =0
+uy(—d, —1.732+ )

—
Ouy

o _ 2 _
LA =—d, —1.732+5, =0 1. Multiply the both side by s; and
Vo =—d,~1.732+5 =0 replace s with s;’.

Ouy

2. Represent s;’ to s; for the
convenience.

L—ys,=0,u>0,i=123

0Os;

m

Determine the Search Direction by Using the Simplex Method
- Iteration 2 (2/10)

Quadratic Programming Problem [ !
Minimize ]7 =(-1.732d,-1.732d,) + 0.5(0!12 + dzz)
Subjectto  0.577d,+0.577d, <0

-d <1.732
-d, <1.732

1

1

|

I

VL= 1732+ d, +0.577u, —u, = 0

2= 0.577(d, +d,)~5.866x10° +5, =0

12 =—d ~1.732+5,=0

Matrix form .
V= —d,~1732+5,=0

1

1

1

oL _ o — . .
U, =0,u,s20,i=1,2,3

1
L. - T T
Minimize [ =¢ @ad,,, +Ed w2 H 5,0d 5,

. T
Subjectto A 5 d ) <bg,,

Assume that H ., is equal to 1.

! d, ~1.732 1 0]!
where, id(m): d, 2€0a) = 1732 SH (50 = 01 ,E
1 1
! 0 :
| 0577 -1 0 :
1A=l 577 ¢ _p[Peo=| 1732 !
R k2 R '

opics in Ship Design i Eall 2016, Myvung:Il Roh ’ !dw lunn b“ 12

2017-06-17

56



Determine the Search Direction by Using the Simplei“w{:’}W:[:;:Zz]’“m'{é (1)]
- Iteration 2 (3/10) I Z

Kuhn-Tucker necessary condition

! 0
IA [0.577 -1 0} b 732
1804 = Day =| L
Ve Tlos7r 0 e

L= ::1_-_7_3_2_;_‘;1:_0_-5_7_7_"_1_—_ U,=0 Pl |:—1.732+d1 +0.577u, —uz} |

o TTb oL | =1732+4d, +0.57Tu, — i
L= 1732+ d, +0.57Tu, —u, =0 e MR N

i e o u |
2L =0.577(d, +d,)~5.866x10" +5, =0 -%7[—1-732}{1 O}VI}{O.SW -1 0} Wl

N V-1732] [0 1|4, ] 0577 0 1 *
L =-d,-1.732+s,=0 - 2 u |
L —td,~1.732+s5,=0 1= tHoobon T AeoBen =0 g
L=us,=0,u,s,20,i=1,2,3

& ~0.577d,-0.577d, +s, | [0.577 0.577]. - [ 0

-d,-1732+s, |=| -1 0 L}' + 5, || 1732
—d,~1.732+s, 0 1 s | 1732
= AT13x2)d<2x|; +83a ~baay = 0

Since the design variables d,, are free in sign, we 3

may decompose them as follows for using the Matrix form

Simplex method.

—d* - +
d(2><1) - d(2><1) _d(le) i
H(2><2) - H(2><2) A(2x3> 0(2><3) d(le) | c(2><])
T T -
A (3x2) -A (3x2) 0(3X3) I(3X3) u(3><1) b(3x1)
=B(5><1()) s(}xl) = D(le)
=X 13

(10x1)

Determine the Search Direction by Using the Simplex Method
- Iteration 2 (4/10)

Kuhn-Tucker necessary condition: VL(d*,d",u,s)=0

.
(2x1)
Heo) | ~Hoo) | Ay Vo) | dea) || =€
T : T ' H -
A i —A ) ! 0(3><3) i I(3x3) U3, b(3><l)
= B(5><10) Sy = D(le)
=X(10><1)
0
T o Ja ~1.732 10 0577 -1 0
where, d(le): d; adlm): - 5Couy = 1732 ’H(sz): 01 ’A(Zx:&): 0577 0 -1 ’b(f&xl): 1.732
- 1.732
1 0 i -1 0 {0577 -1 0i0 0 0
I -1 {0577 0 110 0 0
B =| 0577 0577 {-0577 —0577 1 0 0 01 0 0
-1 0 | 1 0 {0 0 0{0 10
0 -1 0 1 {0 0 0:00 1

X o =[d d d7 dy owowy w5 s, s D7 =[1732 1732 0 1732 1.732]

opics in Ship Design

l“dlﬂb 14

Fall 2016, Myung:Il Roh

2017-06-17

57



Determine the Search Direction by Using the Simplex Method
- Iteration 2 (5/10)

Kuhn-Tucker necessary condition (matrix form) |

B(leO)X(IOxl) = D(5><1) —d,*_

d;
1 0 -1 0 0577 -1 0 0 0 O d]: 1.732
0 1 0 -1 0577 0 -1 0 0 O a 1.732
0.577 0577 -0577 —0577 0 0 0 1 0 0| “|=| o
-1 0 1 0 0 0 01 0 "2 1.732
0 -1 0 1 0 0 0 0 1 1:3 1.732

~1

S,

L3 ]

We want to find.
® This problem is to find X in the linear programming problem only having the equality
constraints.

®» 1.5, =0; i =1 to 3: Check whether the solution obtained from the linear indeterminate
equation satisfies the nonlinear indeterminate equation and determine the solution.

opics in Ship Design i Fall 2016, _Mvung:Il Roh ’ !dmlnﬁnbm s

Determine the Search Direction by Using the Simplex Method
- Iteration 2 (6/10)

Simplex method to solve the quadratic programming problem |

1. The problem to solve the Kuhn-Tucker necessary condition is the same with the problem having
only the equality constraints (linear programming problem).

2. To solve the linear indeterminate equation, we introduce the artificial variables, define the
artificial objective function and determine the initial basic feasible solution by using the Simplex

method.
B X +Y.,=D

(5x1) (5x1)
Artificial variables

(5x10)“X(10x1)

3. The artificial objective function is defined as follows.

5 5 10 5 10
w= ZY = Z}D,. =Y BX, =w,+ Z;Cij
i= i= j=

j=1i=1

..+ Add the elements of the jth column of the matrix B and change the its sign
Y (initial relative objective coefficient).

5
where C/ = —ZB
' i=1

5
Wy = ZDI =1+1+ % +1+1= % : Initial value of the artificial objective function
ol (summation of the all elements of the matrix D)

4. Solve the linear programming problem by using the Simplex and check whether the solution
satisfies the following equation.
us, = 0; i =1 to 3: Check whether the solution obtained from the linear indeterminate equation

satisfies the nonlinear indeterminate equation and determine the solution. e
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Determine the Search Direction by Using the Simplex Method
- Iteration 2 (7/10)

J:

d;

d;
1 0 -1 0 0577 <1 0 00 0] '} 1732
0 1 0 -1 0577 0 -1 0 0 0| | (1732

U
B X +Y =D ® (0577 0577 —0.577 0577 0 0 0 1 0 0 =l 0
(x10)72(10x1) Gx1) Gx1) 10 1 0 0o 0 0 01 0" [1732
Artificial variables 0o -1 0 1 0 0 0 00 1) [1732

S!

S,

Define the artificial objective function for using the Simplex method LS

Sum the all rows (1~5): 0.577.X,+0.577X,-0.577X, —0.577X, +1.154X, - X, - X, + Xy + X, + X, + Y, + Y, + ¥, + ¥, + ¥, =6.928

Replace the summation of the all
artificial to w and rearrange:

w

—0.577.X, ~0.577X, +0.577X, +0.577X, —1.154X, + X, + X, - X, - X, - X,, = w—6.928

{1

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
Y1 1 0 =1l 0 0.577 | -1 0 0 0 0 1 0 0 0 0 1.732 3
Y2 0 1 0 -1 0.577 0 -1 0 0 0 0 1 0 0 0 1.732 3
Y3 |0.577 | 0.577 |-0.577|-0.577| O 0 0 1 0 0 0 0 1 0 0 0 -
Y4 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1.732
Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1.732
A. Obj.|-0.577 [-0.577| 0.577 | 0.577 |-1.154| 1 1 -1 -1 -1 0 0 0 0 0 |w-6.928

Artificial ijective

function

Sum all the elements of the row and change the its sign (ex. 1 row: -(1+0+1/3-1+0)=-1/3) 117

Determine the Search Direction by Using the Simplex Method
- Iteration 2 (8/10)

12

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 | 1.732 | 0.000 |-1.732 0.000 | 1.000 |-1.732 0.000 | 0.000 | 0.000 | 0.000 | 1.732 | 0.000 | 0.000 | 0.000 | 0.000 | 3.000 (-1.732
Y2 |-1.000( 1.000 | 1.000 |-1.000| 0.000 | 1.000 |-1.000| 0.000 | 0.000 | 0.000 (-1.000| 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Y3 | 0.577 | 0.577 |-0.577|-0.577 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000
Y4 |-1.000| 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 1.732 | 1.732
Y5 | 0.000 |-1.000( 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.732
A. Obj.| 1.423 | -0.577 | -1.423 | 0.577 | 0.000 |-1.000| 1.000 |-1.000 |-1.000 |-1.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 |w-3.464
-E X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 |0.000 | 1.732 | 0.000 |-1.732( 1.000 | 0.000 |-1.732 | 0.000 | 0.000 | 0.000 | 0.000 | 1.732 | 0.000 | 0.000 | 0.000 | 3.000
X3 |-1.000] 1.000 | 1.000 |-1.000( 0.000 | 1.000 |-1.000 | 0.000 | 0.000 | 0.000 |-1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000
Y3 | 0.000 | 1.155 | 0.000 |-1.155( 0.000 | 0.577 |-0.577 | 1.000 | 0.000 | 0.000 |-0.577 | 0.577 | 1.000 | 0.000 | 0.000 | 0.000
Y4 | 0.000 |-1.000| 0.000 | 1.000 | 0.000 |-1.000| 1.000 | 0.000 | 1.000 | 0.000 | 1.000 |-1.000 ( 0.000 | 1.000 | 0.000 | 1.732
Y5 | 0.000 |-1.000| 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.732 | 1.732
A. Obj.| 0.000 | 0.845 | 0.000 |-0.845| 0.000 | 0.423 | -0.423|-1.000 | -1.000 [-1.000| 0.577 | 1.423 | 0.000 | 0.000 | 0.000 |w-3.464
-E X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 |0.000 | 1.732 | 0.000 |-1.732| 1.000 | 0.000 |-1.732| 0.000 | 0.000 | 0.000 | 0.000 | 1.732 | 0.000 | 0.000 | 0.000 | 3.000
X3 |-1.000] 1.000 | 1.000 |-1.000( 0.000 | 1.000 |-1.000 | 0.000 | 0.000 | 0.000 |-1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000
Y3 |0.000 | 1.155 | 0.000 |-1.155( 0.000 | 0.577 |-0.577 | 1.000 | 0.000 | 0.000 |-0.577 | 0.577 | 1.000 | 0.000 | 0.000 | 0.000
Y4 | 0.000 |-1.000( 0.000 | 1.000 | 0.000 (-1.000| 1.000 | 0.000 | 1.000 | 0.000 | 1.000 |-1.000| 0.000 | 1.000 | 0.000 | 1.732 | 1.732
X10 | 0.000 |-1.000 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.732
A. Obj.| 0.000 |-0.155| 0.000 | 0.155 | 0.000 | 0.423 |-0.423|-1.000 [-1.000 | 0.000 | 0.577 | 1.423 | 0.000 | 0.000 | 1.000 |w-1.732
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Determine the Search Direction by Using the Simplex Method
- Iteration 2 (9/10)

-E X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 |0.000 | 1.732 | 0.000 (-1.732 1.000 | 0.000 |-1.732 | 0.000 | 0.000 | 0.000 | 0.000 | 1.732 | 0.000 | 0.000 | 0.000 | 3.000 | 1.732
X3 |[-1.000 1.000 | 1.000 |-1.000( 0.000 | 1.000 |-1.000 | 0.000 | 0.000 | 0.000 |-1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Y3 | 0.000 | 1.155 | 0.000 |-1.155| 0.000 | 0.577 |-0.577 | 1.000 | 0.000 | 0.000 |-0.577 | 0.577 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000
X9 | 0.000 |-1.000( 0.000 | 1.000 | 0.000 |-1.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 [-1.000| 0.000 | 1.000 | 0.000 | 1.732 |-1.732
X10 | 0.000 |-1.000 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.732 |-1.732

[A. Obj.| 0.000 [-1.155| 0.000 | 1.155 | 0.000 |-0.577 | 0.577 [-1.000| 0.000 | 0.000 | 1.577 | 0.423 | 0.000 | 1.000 | 1.000 [w-0.000

-E X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 | 1.7320.000 |-1.732| 0.000 | 1.000 (-1.732| 0.000 | 0.000 | 0.000 | 0.000 | 1.732 | 0.000 | 0.000 | 0.000 | 0.000 | 3.000 | 1.732
X2 [-1.000] 1.000 | 1.000 |-1.000( 0.000 | 1.000 |-1.000 | 0.000 | 0.000 | 0.000 |-1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Y3 | 1.155 | 0.000 | -1.155| 0.000 | 0.000 |-0.577| 0.577 | 1.000 | 0.000 | 0.000 | 0.577 |-0.577 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000
X9 [-1.000| 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 1.732 |-1.732
X10 [-1.000| 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |-1.000 | 0.000 | 0.000 | 1.000 |-1.000 | 1.000 | 0.000 | 0.000 | 1.000 | 1.732 |-1.732

A. Obj.|-1.155 [ 0.000 | 1.155 | 0.000 | 0.000 | 0.577 | -0.577 | -1.000 | 0.000 | 0.000 | 0.423 | 1.577 | 0.000 | 1.000 | 1.000 |w-0.000]

-Ei X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 |-0.866 |-0.866 (-1.500| 0.000 | 0.000 | 0.866 | 0.866 |-1.500 | 0.000 | 0.000 | 3.000
X2 | 0.000 | 1.000 | 0.000 |-1.000( 0.000 | 0.500 |-0.500 | 0.866 | 0.000 | 0.000 |-0.500 | 0.500 | 0.866 | 0.000 | 0.000 | 0.000
X1 | 1.000 | 0.000 | -1.000| 0.000 | 0.000 |-0.500 | 0.500 | 0.866 | 0.000 | 0.000 | 0.500 |-0.500| 0.866 | 0.000 | 0.000 | 0.000
X9 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 (-0.500| 0.500 | 0.866 | 1.000 | 0.000 | 0.500 |-0.500| 0.866 | 1.000 | 0.000 | 1.732
X10 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500 |-0.500 | 0.866 | 0.000 | 1.000 |-0.500| 0.500 | 0.866 | 0.000 | 1.000 | 1.732

A. Obj.| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |w-0.000]

Determine the Search Direction by Using the Simplex Method
- Iteration 2 (10/10)

i Y1 Y2 Y3 Y4 Y5 bi bi/ai
0.000 | 0.000 | 0.000 | 0.000 | 1.000 |-0.866 |-0.866 |- 0.000 | 0.000 | 0.866 | 0.866 |-1.500 | 0.000 | 0.000 E 3.000
0.000 | 1.000 | 0.000 |-1.000 | 0.000 | 0.500 |-0.500 | 0.866 | 0.000 | 0.000 |-0.500 | 0.500 | 0.866 | 0.000 | 0.000 { 0.000
1.000 | 0.000 |-1.000 | 0.000 | 0.000 |-0.500 | 0.500 | 0.866 | 0.000 | 0.000 | 0.500 |-0.500 | 0.866 | 0.000 | 0.000  0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 (-0.500| 0.500 | 0.866 | 1.000 | 0.000 | 0.500 |-0.500| 0.866 | 1.000 | 0.000 f 1.732
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500 |-0.500 | 0.866 | 0.000 | 1.000 |-0.500 | 0.500 | 0.866 | 0.000 | 1.000 f 1.732
j.| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |w-0.000]

r -
X(lxlO)z[dl+ d, di dy w o ou, u; s s, s3]

Basic solution:
X,=3, X,=0, X,=0, X,=1732, X,=1.732

Nonbasic solution
X,=X,=X,=X,=X,=0

This solution satisfy the nonlinear indeterminate equation (X, .X,,, =0;i=5%07,X, > 0;i =1t010)
So, the optimal solutionis d, =d, =0, u, =3, u, =u,; =0, 5, =0, 5, =5, =1.732.

» In the Pivot step, if the smallest (i.e., the most negative) coefficient of the artificial objective function or
the smallest positive ratio “b/a," appears more than one time, the initial basic feasible solution can be
changed by depending on the selection of the pivot element in the pivot procedure.

» We have to find and check the solution until the nonlinear indeterminate equation (u; x s;= 0) is satisfied.
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6.6 Summary of the Sequential
Quadratic Programming (SQP)
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Formulation of the Quadratic Programming Problem
to Determine the Search Direction

Minimize f(x+Ax)= f(x)+Vf" (x)Ax+0.5Ax" HAx

The second-order Taylor series expansion of the objective function
. T .
Subjectto h (x+Ax)=h,(x)+Vh, (x)Ax=0; j=1to p
’ The first-orderT(Iinear) Taylor series expansion of the equality constraints
g;(x+Ax)= g, (x)+Vg, (x)Ax<0; j=1tom
The first-order (linear) Taylor series expansion of the inequality constraints
= f(x+Ax) - f(x), e, =—h;(x), b, =—g ,(X),
3f (x)/&x,, n, = h,(x)/x,, a, =0dg,(x)/0x,
Axi

Define: f
Ci
di

Matrix form

d

: Quadratic objective function

(nxn)

v 1
o . . T T
Minimize f =c (lxn)d(nxl)'i‘zd axmyH (o)

Subjectto N (,nd

(nl) = €(pry © Linear equality constraints

T s . . .
A (mX”)d(nxl) < b(mxl) : Linear inequality constraints
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Determination of the Step Size
by Using the Golden Section Search Method

Trial design point for which the descent condition is checked

x(k'j) = x(k) + a(k j.)d(k) ®» How can we determine the value of the ¢ to find the improved design point?

Find the improved design point which minimizes the descent function more than the current point
by changing ¢, ;. (One dimensional search method, such as the Golden section search method,
can be used.)

Determination of the improved design point x**V by using the one dimensional search method such
as the Golden section search method (x* is changed to x**.)

After finding the interval in which the minimum lies, find the minimum point, x, by reducing
the interval (Golden section search method).

CD(X) A The minimum point exists. CD(X) The minimum point exists.
(The interval of uncertainty) : (The interval of uncertainty)
................... |

i : :
i: i i
H l ! '
H : = | |
o i ! A0 B
H ] |
i .?....l .......... r. i } J I: ; |
! | | 1 I |
q!z ¢1 2 3 g 0.6181 < —10.3821
0 32.6185.2365 9.4728 16.3268 o a, Ta,, o,
a’ &a &u Lower limit X(/Hl) Upper limit

123

Formulation of the Quadratic Programming Problem

1
Minimize f=CT(1xn)d(M) +5dT(lxn)H d

(nxn)™" (nxl)

Subject to NT(pxn)d(nXl) =€,

T
A (mxﬂ)d(nx]) Sb(mxl)
Assumption: H,x,) = I,x.

_ 1 1
.., T T T T
Minimize [ =c¢ (m,)d(nxl) + Ed xml d(m) =C (lxn)d(nxl) + Ed (IX")d(nxu

(nxn)
Subject to NT([’X”)d(nxl) = e(pxl) ® Since H,x,) = I,x.) the objective function is
a quadratic form.
AT(an)d(nxl) < b(mxl) » All constraints are linear.

» This problem is called the convex
programming problem and any local
optimum solution is also a global optimum
solution.
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Flow Diagram of the SQP Method

Define the QP problem to determine the search
direction d® and calculate the Lagrange multiplier [+
at the given design point x®, : Sequential
Quadratic
Programming

Solve the QP problem (solution: search direction
d®, Lagrange multiplier) by using the Lagrange
function and Kuhn-Tucker necessary condition.

eck for the stopping criteria
| d®|<g, and the maximum
onstraint violation V,<

Set x* = x®
and stop.

Find the improved design point (x**D) to minimize the
descent function along the search direction (d®) by
using the one dimensional search method (ex: Golden
section search method)
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Summary of the SQP (CSD) Method (1/2)

M Step 1: Set k= 0. Estimate the initial value for the design variables as
x©. Select an appropriate initial value for the penalty parameter R,,
and two small number ¢, &, that define the permissible constraint
violations and convergence parameter values, respectively.

M Step 2: At x®, compute the objective and constraint functions and
their gradient. Calculate the maximum constraint violation V,.

M Step 3: Using the objective and constraints function values and their
gradients, define the QP problem. Solve the QP problem to obtain
the search direction d® (= x**D - x®) and Lagrange multiplier v(¥ and
u®,
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Summary of the SQP (CSD) Method (2/2)

M Step 4: Check for the stopping criteria | d¥| < & and the maximum
constraint violation V,< ¢,. If these criteria are satisfied then stop.
Otherwise continue.

M Step 5: Calculate the sum r, of the Lagrange multiplier. Set R =
max{R,, r,}.

M Step 6: Set xk)=x®+ q, ,d®, where a =a,; is a proper step size. As
for the unconstrained problems, the step size can be obtained by
minimizing the descent function along the search direction d®. The
one dimensional search method, such as the Golden section search
method, can be used to determine the optimum step size.

(If the one dimensional search method is completed, the current
design point x*/ is changed to x**).)

M Step 7: Save the current penalty parameter as R, = R. Update the
iteration counter as k = k+1 and go to Step 2.
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Effect of the Starting Point in the SQP Method

1 Define the QP problem to determine the search
The starting point can affect performance 1(1'*“ *I?
of the method.

For example, at some points, the
Quadratic Programming problem defined i

to determine the search direction may not | e e e
have any solution. o

This does not mean that the original — —
problem is infeasible.

The original problem may be highly
nonlinear, so that the linearized constraints
may be inconsistent giving infeasible
Quadratic Programming problem.

fi stopy
{d® < ¢, and the maximui
onstraint violation V.=

This situation can be handled by either
temporarily deleting the inconsistent
constraints or starting from another point.
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