9.3.3. Fed-Batch Operation

What is a Fed-Batch Operation?

A Variable-Volume Semi-Batch Operation with Feed but Withdrawal only at the End

A Semi-Batch Operation in Which the Feed Containing Sources of Carbon, Nitrogen, and Others are Fed either Intermittently or Continuously During the Course of Otherwise a Batch Operation

Why a Fed-Batch Operation?

- To Overcome Substrate Inhibition
- To Overcome Glucose Effect
- To Overcome Catabolite Repression
- To Utilize Auxotrophs
- To Achieve High Cell and Metabolite Density
- To Extent Operational Period
- To Alleviate High Broth Viscosity
- To Make Up for Water Loss by Evaporation To Increase Reaction Rates and/or Yields and Overcome Physical Difficulties

Products Using Fed-Batch Operation

- Antibiotics
- Baker`s Yeast
- Enzymes
- Microbial Cells
- Natural Lipids
- Nucleotides

- Organic Acids
- r-DNA Products
- Solvents
- Vitamins
- Yeasts

Specific Growth Rate

$$\mu = \frac{1}{XV} \frac{d(XV)}{dt}$$
- Batch
$$\mu = \frac{1}{X} \frac{dX}{dt}$$
- Fed-Batch
$$\mu = \frac{1}{X} \frac{dX}{dt} + \frac{1}{V} \frac{dV}{dt}$$

Growth Yield

 $Y = \frac{\Delta X}{\Delta S}$ $-\frac{dX}{dS}$

Mass Balance

Acc = In - Out + Gen - Con

Accumulation rate = Input rate – Output rate + Generation rate – Consumption rate

d () d t =

Fed-Batch Operation

F (L/h) : Flow Rate V (L) : Working Volume X (g/L) : Cell Concentration S (g/L) : Substrate Concentration

Mass Balances

- substrate

$$\frac{d(SV)}{dt} = S_F F - \frac{1}{Y} \mu XV - --(2)$$

- Total

$$\frac{dV}{dt} = F - - - - -(3)$$

Determination of Feed Rate (using mass balance equations)

- cell

$$\frac{d(XV)}{dt} = \mu XV \rightarrow \frac{dX}{dt} = (\mu - \frac{F}{V})X - \dots - (1)$$
- substrate

$$\frac{d(SV)}{dt} = S_F F - \frac{1}{Y}\mu XV \rightarrow \frac{dS}{dt} = (S_F - S)\frac{F}{V} - \frac{\mu X}{Y} - \dots - (2)$$

- Total
$$\frac{dV}{dt} = F - - - - (3)$$

With $\frac{dS}{dt} = 0$

(2)
$$\longrightarrow F = \frac{\mu X}{Y} \frac{V}{S_F - S} \dots (4)$$

Determination of Feed Rate (using mass balance equations)

 $\frac{d(XV)}{dt} = \mu XV$

- cell

$$XV = X_0 V_0 e^{\mu t} \dots (5)$$

(4)
$$\rightarrow F = \frac{\mu X}{Y} \frac{V}{S_F - S} = \frac{\mu X_0 V_0}{Y(S_F - S)} e^{\mu t}$$
(5)

E. coli Fed-Batch Operation with Exponential Feeding

Productivity (g product/L hr)

Productivity

$Pd = \frac{CellMass}{Volume}(X) \times SpecificExpression(Ps)$ CultureTime

Necessary condition

- High cell density culture
- High specific expression

To Maximize Productivity

High cell density culture

- By-product: acetic acid
 - Synthetic media: $\mu = 0.35 \text{ hr}^{-1}$
 - Complex media: $\mu = 0.2 \text{ hr}^{-1}$

High specific expression

- Expression vs. specific growth rate
 - Low μ, high product
- Proteolytic degradation

Feed Flow Rate Control in Fed-Batch Operation

- Feedback Control
- Feed Forward Control
 μ↑, acetic acid ↑, growth↓, expression ↓

$$\mu = \frac{\mu_m S}{Ks + S}$$

Exponential Feeding

 $F = \frac{X_0 \times V_0 \times \mu \times e^{\mu t}}{S_F \times Y}$

Fed-Batch Operation

Growth Yield

Yield

Time Variable

Growth Yield

Yield

Time Variable

$$\frac{dY}{dt} = \frac{1}{ty}(Ym - Y), t = t_0, Y = Y_0$$

 $Y = 0.7 Exp \{-(t-8)/8\} + 0.95$

Fed-Batch Operation

Fed-Batch Operation

Why does the specific expression rate decrease with the increase of cell density?

8. Degradation by protease

Effect of PMSF on Protein Degradation.

PMSF (Phenyl Methane Sulfonyl Fluoride)

Effect of Culture Temperature on Protein Degradation

Product Degradation by Protease

- Protease is induced under stressful conditions
 - Depletion of Carbon or Nitrogen source
 High Temperature
 Expose to ethanol, UV

Composition of Modified Medium

Component	Concentration		
	Starting medium	Feeding medium 1	Feeding medium 2
Yeast Extract (g/L)	1.0	-	100
$KH_2PO_4(g/L)$	15.0	-	-
MgSO ₄ · 7H ₂ O (g/L)	4.0	-	15.5
Glucose	2.0	400	400
$FeSO_4$ · 7H ₂ O (mg/L)	-	200	200
$CaCl_2$ · $2H_2O$ (mg/L)	-	1300	1300
$MnSO_4$ · $5H_2O$ (mg/L)	-	67	67
$CoCl_2$ · $6H_2O$ (mg/L)	-	13	13
$ZnSO_4$ ·7 H_2O (mg/L)	-	67	67
$CuCl_2$ · 5H ₂ O (mg/L)	-	13	13
Na_2MoO_4 · 2H ₂ O (mg/L)	-	13	13

Fed-Batch Operation with YE

Fed-Batch Operation with YE

Fed-Batch Operation with Controlled Specific Growth Rate

Fed-Batch Operation with Controlled Specific Growth Rate

Effect of Specific Growth Rate on Expression

Productivity Maximization

$$P_{s,max} = -13.2\mu + 5.96$$

$$Pd = \frac{XP_{s,max}}{t}$$

$$[XV = X_0 V_0 e^{\mu t} \longrightarrow t = \frac{1}{\mu} \ln(\frac{XV}{X_0 V_0})]$$

$$= \frac{X\mu P_{s,max}}{\ln(\frac{XV}{X_0 V_0})}$$
Maximization of Pd
$$\longrightarrow Maximization of (\mu P_{s,max})$$

$$\mu P_{s,max} = -13.2\mu^2 + 5.96\mu$$
Optimum $\mu = 0.23$ (1/hr)

Optimum Specific Growth Rate for Maximum Productivity

