Homework reminder (22nd Mar)

Interesting Question.

• Shear or Moment?

Kahoot discussion

Truss vs Frame

A plane truss has downward applied load P at joint 2 and another load P applied leftward at joint 5. The force in member 4-5 is:

The moment reaction at A in the plane frame below is approximately:

(A) +1400 N.m (B) -2280 N.m (C) -3600 N.m (D) +6400 N.m

- Truss system
- No. of members (m) = 9
- No. of joints (j) = 6
- No. of unknown reactions (R) = 3

m + R = 2j

: Statically Determinate Structure

- Add member FC
- No. of members (m) = 10
- No. of joints (j) = 6
- No. of unknown reactions (R) = 3

FC = Additional sharing for forces, Additional Stability

m + R > 2j

: Statically Indeterminate Structure

• Other examples.

Statically Determinate Structure

Statically Indeterminate Structure

Determinacy

- When more number of members/supports are present than are needed to prevent collapse/stability
 - : Statically Indeterminate Structure (truss)
- Cannot be analyzed using equations of equilibrium alone!
- Additional members or supports which are not necessary for maintaining the equilibrium configuration
 - : Redundant member
- We can solve the statically indeterminate structure but it is more difficult (but possible!)

Zero force members in "Truss (All pin joints)"

- Element 4-5
- Cannot satisfy "Force Equilibrium (y)" condition at joint 4
- How about in "Frame"?

Chapter 2. Axially Loaded Members

- Stiffness (Flexibility)
- Changes under non-uniform conditions
- Statically Indeterminate Structures
- Thermal effect
- Stress on inclined section
- Strain energy
- Impact loading
- Stress concentration
- Nonlinear behavior

Stiffness (Flexibility)

- Changes in lengths of axially loaded member
- L (unstressed length)
- Load and elongation will be proportional:

 $P = k\delta \qquad \delta = fP$

• Stiffness and flexibility are the reciprocal of each other

$$k = \frac{1}{f} \qquad f = \frac{1}{k}$$

Stiffness (Flexibility)

• Prismatic Bars

• Stiffness (k) and Flexibility (f) ->

$$k = \frac{EA}{L} \qquad f = \frac{L}{EA}$$

 $P = k\delta$ $\delta = fP$

Changes in lengths under non-uniform condition

• Prismatic bar with multiple loading points

$$N_1 = -P_B + P_C + P_D$$

$$N_2 = P_C + P_D$$

$$N_3 = P_D$$

Example: Rubber in tension

Changes in lengths under non-uniform condition

 $\delta_1 = \frac{N_1 L_1}{N_1 L_1}$

 $\delta_2 =$

• Prismatic bar with multiple loading points

Changes in lengths under non-uniform condition

• Prismatic bar with multiple loading points with various sections

• Compute net axial force in each cases.

Statically Determinate Structure

Statically Indeterminate Structure

• What should we calculate?

- $\sum F_{\text{vert}} = 0$ $R_A P + R_B = 0$
- There are two vertical reactions but only one useful equation of equilibrium
- We need something else! -> Use an equation of compatibility

 $\delta_{AB} = 0$

Statically Indeterminate Structure

• Decompose members

• Example 2-6

• Temperature change will result in thermal strain

FIG. 2-19 Block of material subjected to an increase in temperature

• Thermal expansion coefficient α

 $\alpha_L = \frac{1}{L} \frac{aL}{dT}$ $\delta_T = \epsilon_T L = \alpha(\Delta T) L$ $\epsilon_T = \alpha(\Delta T)$

• Sign convention (expansion +, contraction -)

(unit: 10⁻⁶/K or /K or /'C)

Temperature-displacement relation (force-displacement relation)

• Thermal expansion coefficient α

$$\alpha_L = \frac{1}{L} \frac{dL}{dT} \qquad \text{(unit: 10^{-6}/K or /K)}$$

$$\epsilon_T = \alpha(\Delta T) \qquad \qquad \delta_T = \epsilon_T L = \alpha(\Delta T) L$$

TABLE H-4 COEFFICIENTS OF THERMAL EXPANSION

Material	Coefficient of thermal expansion α		Material	Coefficient of thermal expansion α	
	10 ⁻⁶ /°F	10 ^{−6} /°C		10 ⁻⁶ /°F	10 ^{−6} /°C
Aluminum alloys	13	23	Plastics		
Brass	10.6-11.8	19.1–21.2	Nylon Polyethylene	40-80 80-160	70–140 140–290
Bronze	9.9–11.6	18-21	Posk	2.5	5.0
Cast iron	5.5-6.6	9.9–12	KOCK	5-5	5-9
Concrete	4-8	7–14	Rubber	70–110	130-200
Copper and copper alloys	9.2–9.8	16.6–17.6	Steel High-strength	5.5–9.9 8.0	10–18 14
Glass	3-6	5-11	Stainless	9.6	17
Magnesium alloys	14.5-16.0	26.1-28.8	Structural	6.5	12
Monel (67% Ni, 30% Cu)	7.7	14	Titanium alloys	4.5-6.0	8.1–11
Nickel	7.2	13	Tungsten	2.4	4.3

 $\epsilon_T = \alpha(\Delta T)$

• Does it always induce thermal stress?

 $\sigma = E\alpha(\Delta T)$

- If delta T1 is different from delta T2, will thermal stress occur?
- No stresses in either bar and no reactions at supports in structurally determinate structure. (less restraint, freely movable)

• Example 2-7

Statically Determinate Structure

Statically Indeterminate Structure

• Thermal properties of concrete and steel

$$\alpha_L = \frac{1}{L} \frac{dL}{dT} \qquad \qquad \alpha_V = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p$$

	Linear coefficient at 20°C (10 ⁻⁶ /K)	Volumetric coefficie nt at 20°C (10 ⁻⁶ /K)
Concrete	12	36
steel	11~13	33~39

(Normal section)

- Implication:
- <u>Although the max. shear stress in an axially loaded bar is only one-half the max. normal stress, the shear stress can cause failure if the material is much weaker in shear than in tension.</u>

Load

- Shear failure along a 45 degree of a wood block loaded in corr
- Slip bands in a polished steel specimen loaded in tension

Other topics

- Stress concentrations
- Saint-Venant's principle

Other topics

• Stress concentration factor K:

(b)

