
CHAPTER 12

QUERY PROCESSING

Intro to DB

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 2

Chapter 12: Query Processing

▪ Overview

▪ Measures of Query Cost

▪ Selection Operation

▪ Sorting

▪ Join Operation

▪ Other Operations

▪ Evaluation of Expressions

▪ Cost Estimation of Expressions (Chap. 13)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 3

Basic Steps in Query Processing

1. Parsing and translation

 translate the query into an internal form

(eg., relational algebra)

 Parser checks syntax, verifies relations

2. Optimization

 More than one way to evaluate a query

3. Evaluation

 The query-execution engine takes a query-

evaluation plan, executes that plan, and

returns the answers to the query.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 4

Query Plan

▪ Evaluation primitive

 a relational algebra expression annotated with instructions on how to evaluate it

 balance>2500(account): use index 1

 balance>2500(account): use table scan

▪ Query evaluation (execution) plan

 a sequence of primitive operations that can be used to evaluate a query

▪ Example:

 SELECT balance FROM account WHERE balance>2500

 balance balance>2500: seq. scan

 balance>2500: use index 1 balance

account account

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 5

▪ More than one way to evaluate a query

▪ Equivalence of Expressions

Given a DB schema S, a query Q on S is equivalent to another query Q’ on S, if the

answer sets of Q and Q’ are the same in any instances of the DB.

name, title(dept=“Music”(instructor ⋈ (teaches ⋈ course))) vs

name, title((dept=“Music”(instructor)) ⋈ (teaches ⋈ course))

Query Optimization

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 6

▪ Query optimization is the process of selecting the most efficient query

evaluation plan for a given query

▪ Generation of Evaluation Plan

1. Generating logically equivalent expressions

 Use equivalence rules to transform an expression into an equivalent one.

2. Annotating resulting expressions to get alternative query plans

3. Choosing the cheapest plan based on estimated cost

▪ The overall process is called cost based optimization.

Query Optimization

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 7

Measures of Query Cost

▪ Cost is generally measured as total elapsed time for answering query

 Many factors contribute to time cost

 disk accesses, CPU, or even network communication

▪ Disk access is the predominant cost (in general)
 also relatively easy to estimate.

 # of seeks average-seek-cost

 # of blocks read average-block-read-cost

 # of blocks written average-block-write-cost

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 8

Measures of Query Cost (Cont.)

▪ For simplicity, we only use

 number of block transfers from disk

 tT – time to transfer one block: 10~40 ms

 number of seeks

 tS – time for one seek: 8~20 ms (disk seek + rotational delay)

 Cost for b block transfers plus s seeks

b tT + s tS

▪ We ignore CPU costs

▪ We do not include cost of writing final output to disk

 output of an operation may be sent to the parent operation without being written to

disk

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 9

Selection Operation

▪ File scan
 locate and retrieve records that fulfill a selection condition

 Full file scan: retrieve all records of a file (relation)

▪ A1: linear search
 Scan each file block and test all records on the selection condition

 Cost estimate (number of disk blocks scanned) = br * tT + 1 * tS
 br : # of blocks containing records from relation r

 If selection is on a key attribute, cost = (br /2) * tT + 1 * tS
 stop on finding record

 Linear search can be applied regardless of

 selection condition or

 ordering of records in the file, or

 availability of indices

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 10

Selections Using Indices

▪ Index scan – search algorithms that use an index

 selection condition must be on search-key of index.

▪ A2 (primary index, equality on key). Retrieve a single record that satisfies the

corresponding equality condition

 Cost = (hi + 1) * (tT + tS)

▪ A3 (primary index, equality on nonkey) Retrieve multiple records.

 Records will be on consecutive blocks

 Let b = number of blocks containing matching records

 Cost = hi * (tT + tS) + tS + tT * b

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 11

Selections Using Indices

▪ A4 (secondary index, equality).

 Retrieve a single record if the search-key is a candidate key

 Cost = (hi + 1) * (tT + tS)

 Retrieve multiple records if search-key is not a candidate key

 each of n matching records may be on a different block

 Cost = (hi + n) * (tT + tS)

 Can be very expensive!

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 12

Selections Involving Comparisons

▪ Can implement selections of the form AV (r) or A V(r) by using

 a linear file scan,

 or by using indices in the following ways:

▪ A5 (primary index, comparison). (Relation is sorted on A)

 For A V(r) use index to find first tuple v and scan relation sequentially
from there

 For AV (r) just scan relation sequentially till first tuple > v; do not use
index

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 13

Selections Involving Comparisons (Cont.)

▪ Can implement selections of the form AV (r) or A V(r) by using

 a linear file scan,

 or by using indices in the following ways:

▪ A6 (secondary index, comparison).

 For A V(r) use index to find first index entry v and scan index
sequentially from there, to find pointers to records.

 For AV (r) just scan leaf pages of index finding pointers to records, till
first entry > v

 In either case, retrieve records that are pointed to

 requires an I/O for each record

 Linear file scan may be cheaper

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 14

External Sort-Merge

▪ Sorting
 Important core operation: order by, group by, join, …

 One option: build an index, and use the index to read the

relation in sorted order. May lead to one disk block

access for each tuple.

▪ External Sort-Merge

 Good choice for relations that don’t fit in memory

M=3; 1 rec/block

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 15

External Sort-Merge

▪ Let M denote memory size (in pages).

1. Create sorted runs. Let i be 0 initially.

Repeatedly do the following till the end of the relation:

(a) Read M blocks of relation into memory

(b) Sort the in-memory blocks

(c) Write sorted data to run Ri ; increment i

Let the final value of i be N

M=3; 1 rec/block

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 16

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). (if N < M)

1. Use N buffer blocks for input runs,

1 buffer block for output.

Read the first block of each run into its buffer page

2. repeat

1. Select the first record (in sort order) among all

buffer pages

2. Write the record to the output buffer. If the output

buffer is full write it to disk.

3. Delete the record from its input buffer page.

If the buffer page becomes empty then

read next block (if any) of the run into the buffer.

3. until all input buffer pages are empty:

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 17

External Sort-Merge (Cont.)

2. Merge the runs (if N M)

▪ If N M, several merge passes are required.

 In each pass, contiguous groups of M - 1 runs are

merged.

 A pass reduces the number of runs by a factor of M -1,

and creates runs longer by the same factor.

 E.g. If M=11, and there are 90 runs, one pass reduces the

number of runs to 9, each 10 times the size of the initial

runs

 Repeated passes are performed till all runs have been

merged into one.

M=3; 1 rec/block

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 18

External Sort-Merge –Cost Analysis

▪ Total number of merge passes required: logM–1(br/M).

▪ Block transfers

 for initial run creation as well as in each pass: 2br

 Thus total number of block transfers for external sorting:

br (2 logM–1(br / M) + 1) (we don’t count final write cost)

▪ Seeks

 Run generation: 1 seek to read and 1 seek to write each run

 2 br / M

 During the merge phase

 Buffer size per run: bb (read/write bb blocks at a time)

 Need 2 br / bb seeks for each merge pass

 except the final one which does not require a write

 Total number of seeks:

2 br / M + br / bb (2 logM–1(br / M) -1)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 19

Join Operation

▪ Several different algorithms to implement joins

 Nested-loop join

 Block nested-loop join

 Indexed nested-loop join

 Merge-join

 Hash-join

▪ Choice based on cost estimate

▪ Running Example

 Number of records of student: 5,000 takes: 10,000

 Number of blocks of student: 100 takes: 400

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 20

▪ To compute the theta join r ⋈ s

for each tuple tr in r do

for each tuple ts in s do

if pair (tr, ts) satisfy the join condition
add tr • ts to the result.

 r is called the outer relation

 s the inner relation

▪ Requires no indices and can be used with any kind of join condition.

▪ Expensive since it examines every pair of tuples in the two relations.

Nested-Loop Join

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 21

Nested-Loop Join (Cont.)

▪ Worst case

 there is memory only to hold one block of each relation

nr bs + br block transfers + nr + br seeks

▪ Best case

 the smaller relation fits entirely in memory: use it as the inner relation

br + bs transfers + 2 seeks

▪ Example

 with student as outer relation:

 5000 400 + 100 = 2,000,100 block transfers,

 5000 + 100 = 5100 seeks

 with takes as the outer relation

 10000 100 + 400 = 1,000,400 block transfers and 10,400 seeks

 If smaller relation (student) fits entirely in memory

 100 + 400 = 500

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 22

Block Nested-Loop Join

▪ Variant of nested-loop join

 every block of inner relation is paired with every block of outer relation

for each block Br of r do

for each block Bs of s do

for each tuple tr in Br do

for each tuple ts in Bs do

if (tr, ts) satisfy the join condition

then add tr • ts to the result

▪ Worst case estimate

 Each block in the inner relation s is read once for each block in the outer relation

 br bs + br block transfers + 2 * br seeks

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 23

Block Nested-Loop Join (Cont.)

▪ Best case

 br + bs block transfers + 2 seeks.

▪ Improvements

 Use M-2 disk blocks as blocking unit for outer relations, and remaining two blocks to buffer

inner relation and output

 Cost = br / (M-2) bs + br block transfers +

2 br / (M-2) seeks

 If equi-join attribute forms a key of inner relation, stop inner loop on first match

 Scan inner loop forward and backward alternately, to make use of the blocks remaining in

buffer (with LRU replacement)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 24

Hash-Join

▪ Applicable for equi-joins and natural joins.

▪ A hash function h is used to partition tuples of both

relations

▪ h maps JAttrs values to {0, 1, ..., n-1}

 JAttrs: attributes of r and s used in the equi-join.

 r0, r1, . . ., rn-1 : partitions of r

 tr r is put in partition ri where i = h(tr [JAttrs]).

 s0, s1, . . ., sn-1 : partitions of s

▪ r tuples in ri need to be compared with s tuples in si

only

(Note: In the textbook, ri is denoted as Hri, si is denoted as Hsi, and n

is denoted as nh.)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 25

Hash-Join Algorithm

1. Partition the relation s using hashing function h.

 When partitioning a relation, one block of memory is reserved as the output buffer for

each partition.

2. Partition r similarly.

3. For each i:

(a) Load si into memory

 build an in-memory hash index on it using the join attribute (using a different hash function than

the earlier one h)

(b) Read the tuples in ri from the disk one by one

 For each tuple tr locate each matching tuple ts in si using the in-memory hash index. Output the

concatenation of their attributes.

▪ Relation s is called the build input and

r is called the probe input

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 26

Hash-Join algorithm (Cont.)

▪ The value n and the hash function h is chosen such that each si should fit in

memory.

▪ Hash-table overflow occurs in partition si if si does not fit in memory.

 Many tuples in s with same value for join attributes or bad hash function

 Overflow resolution can be done in build phase

 Partition si is further partitioned using different hash function.

 Partition ri must be similarly partitioned.

 Fails with large numbers of duplicates

 Fallback option: use block nested loops join on overflowed

partitions

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 27

▪ Cost of hash join (without recursive partitioning)

3(br + bs) + 4nh block transfers (4nh can be ignored) +

2(br / bb + bs / bb) seeks

 If the entire build input can be kept in main memory, n can be set to 0 and the algorithm

does not partition the relations into temporary files. Cost estimate goes down to br + bs.

▪ Example:

 student ⋈ takes

 memory size: 20 blocks; bstud= 100 and btakes = 400.

 student is build input

 Partition it into 5 partitions, each of size less than 20 blocks

 Similarly, partition takes into 5 partitions each of size about 80

 Therefore total cost:

3(100 + 400) = 1500 block transfers

2(100/3 + 400/3) = 336 seeks

Cost of Hash-Join

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 28

Evaluation of Expressions

▪ So far, we have seen algorithms for individual operations

▪ How do you evaluate an entire expression tree?

▪ Materialization

 generate results of an expression whose inputs are relations or are already computed,

materialize (store) it on disk. Repeat.

▪ Pipelining

 pass on tuples to parent operations even as an operation is being executed

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 29

▪ Evaluate one operation at a time, starting at the lowest-level.

▪ Use intermediate results materialized into temporary relations to evaluate

next-level operations.

▪ E.g.,

 compute and store

 then compute and store its join with instructor

 and finally compute the projections on name.

Materialization

)("Watson" departmentbuilding=

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 30

Materialization (Cont.)

▪ Materialized evaluation is always applicable

▪ Cost of writing results to disk and reading them back can be quite high

 Our cost formulas for operations ignore cost of writing results to disk

 Overall cost = Sum of costs of individual operations +

cost of writing intermediate results to disk

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 31

Pipelining

▪ Evaluate several operations simultaneously

 passing the results of one operation on to the next.

▪ E.g., in expression tree

 don’t store result of selection

 instead, pass tuples directly to the join

 Similarly, don’t store result of join but pass tuples

directly to projection

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 32

Pipelining (cont.)

▪ Much cheaper than materialization

 no need to store a temporary relation to disk.

▪ Pipelining may not always be possible

 e.g., sort, hash-join: must wait for entire input to materialize

 Very difficult to achieve a lengthy chain of pipeline

▪ For pipelining to be effective

 use evaluation algorithms that generate output tuples even as tuples are received for

inputs to the operation

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 33

Cost Estimation of Expressions

▪ Cost of computing each operator is as described

 Need statistics of input relations

 E.g. number of tuples, sizes of tuples

▪ Inputs can be results of sub-expressions

 Need to estimate size of expression results

 Additional statistics are needed

 number of distinct values for an attribute, histograms, …

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 34

Cost Estimation of Expressions

bcourse = 10000/25 = 400

binstructor = 2000/25 = 80

bteaches = 20000/100 = 200

(20%)

M = 22

N: br / (M-2) bs + br

H: 3(br + bs) + 4nh

(1%)

name, title(dept=“Music”year = 2009

(instructor ⋈ (teaches ⋈ c_id, title (course))))

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 12 - 35

Cost Estimation of Expressions

bcourse = 10000/25

= 400 blocks

binstructor = 1000/25

= 80 blocks
bteaches = 20000/100

= 200 blocks

(20%)

(1%)

name, title(dept=“Music”year = 2009

((instructor ⋈ teaches) ⋈ c_id, title (course))))

M = 22

N: br / (M-2) bs + br

H: 3(br + bs) + 4nh

END OF CHAPTER 12

