
Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 1

M1586.002500 Information Engineering for CE Engineers
In-Class Material: Class 21

Tree-Based Methods (ISL Chapter 8)

1. Trees Versus Linear Models

(a) Model forms:

Linear model: () =  + ∑ 

Regression Tree: () = ∑  ∙ 1(∈)
where 1(∈) = 1 if  ∈ , and 0 otherwise.

(b) Linear models are preferable when the given features and the response can be well
approximated by linear relationship

(c) Trees are preferable when there is a highly non-linear and complex relationship
between the features and the response

or for the sake of interpretability and visualization

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 2

2. Advantages and Disadvantages of Trees

(a) Advantages

- Trees can be displayed graphically, and are easily interpreted even by a non-expert

(especially if the trees are small)

- Some people believe that decision trees more closely mirror human decision-making

- Trees can easily handle qualitative predictor without the need to create dummy
variables

(b) Disadvantages

- Trees generally do not have the same level of predictive accuracy as other advanced

approaches for regression and classification

- Trees can be very non-robust, i.e. a small change in data can cause a large change
in the final estimated tree

Note: the predictive performance of trees can be substantially improved by a________
many decision trees, using methods like bagging, random forests, and boosting.

3. Techniques to Improve Trees (1): Bagging (“Bootstrap Aggregation”)

(a) Strategy: By averaging a set of observations, reduce the high variance of a single tree,
i.e. avoid overfitting

Note: Given a set of  independent observations , ⋯ , , each with
variance , the variance of their mean is given by /

(b) Procedure:

(1) Generate B different bootstrapped training data set.
Recall: Bootstrap artificially generates a large set of data from a given smaller data

set by randomly sampling the data points with replacement.

(2) For each of the B training sets, evaluate a deep, not pruned (i.e. high variance and
low bias) tree, ,  = 1,⋯ , .

(3) Make predictions ∗() using  and aggregate to obtain the final solution  ():
For regression, take the average, i.e.  () = ∑ ∗() /
For classification, determine by majority vote among the B predictions

(c) Out-of-Bag (OOB) error estimation

- Efficient way to estimate the test error of a bagged model

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 3

- Useful especially for large data-set for which cross-validation would be
computationally onerous

- Motivation: One can show that on average, each bagged tree uses around two-thirds
of the observations (Why? Homework)

- Method: Predictions are made on each observation using around /3 trees that have
not used the observation, and aggregate the result for all observations to get OOB
error

- OOB error is a valid estimate of the test error (For B sufficiently large, OOB error is
virtually equivalent to leave-one-out cross-validation error)

(d) Variable importance measure

- In contrast to a single tree, utilizing multiple trees makes it hard to interpret the
resulting model

- Alternatively, by for each predictor, one can quantify the relative importance measure
by computing the mean decrease in reference error measure, e.g. RSS during split
across the B trees, i.e. the larger the mean value, the more important the predictor is

4. Techniques to Improve Trees (2): Random Forests

(a) Strategy: By de-correlating the trees in bagging, obtain higher reduction in variance
 than bagging

Note: If the observations , ⋯ ,  are NOT independent, the variance of their mean is
greater than by /. Bootstrapping generates highly correlated samples.

(b) Method: For each split in each tree, only a fresh sample of  predictors are considered
 among p predictors

- Typically,  ≈  is chosen
- Equivalent to bagging when  = 
- Small  is desirable when a large number of predictors are correlated

Large B allows us to avoid overfitting. In practice, it is typical to choose B sufficiently large
for the error rate to have settled down

5. Techniques to Improve Trees (3): Boosting

(a) Strategy: Instead of fitting a tree directly into a given set of data (i.e. fitting the data
 hard), sequentially fit a decision tree to the r_______ of current tree (i.e. learn
 slowly)

(b) Procedure (in regression):

(1) Set () = 0 and  =  for all  in the training set.
(: the response of ith observation)

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 4

(2) For  = 1,⋯ , , repeat:

(2-1) Fit a tree  with  splits ( + 1 terminal nodes) to the training data (, ).
(2-2) Update  by adding in a shrunken version of the new tree: () ← () + ()
(2-3) Update the residuals,  ←  − ()
until  is sufficiently small to meet the stopping criterion.

(3) Output the boosted model, () = ()


(c) Parameters:

(1) The number of trees B: Unlike bagging and random forests, boosting can lead to
overfitting if B is too large, although overfitting tends to occur slowly if at all. → Cross-validation to select B is required

(2) The shrinkage parameter , a small positive number: This controls the rate at which
boosting learns. Typical values are 0.01 or 0.001. → The smaller , the larger B

(3) The number d of splits in each tree (interaction depth): This controls the complexity
of the boosted ensemble. Often  = 1 works well, i.e. stump, consisting of a single
split (à leads to an additive model)

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 5

Example 3 (Bagging, random forests, and boosting): Using the Boston data set, predict
medv (median value of owner-occupied homes) based on other 13 predictors.

Using R package “randomForest” for bagging and random forests, and “gbm” for boosting,
the sets of trees with size from 5 to 2,500 have been examined. For random forests,  =4 ≈ √13 is used, and for boosting,  = 4 and  = 0.1 are used. The mean squared errors of
test data are obtained as

0 100 200 300 400 500

10
15

20
25

30

Number of Trees

M
ea

n
S

qu
ar

ed
 E

rro
r (

Te
st

 d
at

a)

Bagging
Random Tree
Boost

Bagging
Random Forest
Boost

Bagging
Random Forest
Boosting

In the figure, for all of the three approaches, 100 trees appear to be enough for the error
measure to settle down. Throughout the experiments, random trees and boosting show
comparative performance to each other while both outperforming bagging.

The importance of each variable can be measured using bagging or random forests. Using
the random forest with 100 trees, the importance of variables is quantified as

On the right-hand side is the mean decrease of accuracy in predictions on the OOB
samples when a given variable is excluded from the model. On the left-hand side is a
measure of the total decrease in node impurity that results from splits over that variable,
averaged over all trees. While the two measures agree overall, there is a slight difference in
the order and the relative magnitude of quantified importance between variables.

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 6

library(randomForest)
library(gbm)
library(MASS)
attach(Boston)

Example 3 (Bagging, random forests, boosting)

set.seed(1)
train=sample(1:nrow(Boston),nrow(Boston)/2)
boston.test = Boston[-train,"medv"]

ntrees = 1:500
for (i in ntrees) {
 bag2.boston =

randomForest(medv~.,data=Boston,subset=train,mtry=13,ntree=i)
 rf2.boston =

randomForest(medv~.,data=Boston,subset=train,mtry=4,ntree=i)
 boost2.boston =

gbm(medv~.,data=Boston[train,],distribution="gaussian",n.trees=i,intera
ction.depth=4) # default value for option shrinkage = 0.1

 yhat.bag = predict(bag2.boston,newdata=Boston[-train,])
 yhat.rf = predict(rf2.boston,newdata=Boston[-train,])
 yhat.boost = predict(boost2.boston,newdata=Boston[-train,],n.trees=i)

 if (i==ntrees[1]) {
 mse.bag = mean((yhat.bag-boston.test)^2)
 mse.rf = mean((yhat.rf-boston.test)^2)
 mse.boost = mean((yhat.boost-boston.test)^2)
 } else {
 mse.bag = c(mse.bag,mean((yhat.bag-boston.test)^2))
 mse.rf = c(mse.rf,mean((yhat.rf-boston.test)^2))
 mse.boost = c(mse.boost,mean((yhat.boost-boston.test)^2))
 }
}

figure(1)
plot(ntrees,mse.bag,type='l',lty=2,ylab='Mean Squared Error (Test

data)',xlab='Number of Trees',ylim=c(10,30),col='red')
lines(ntrees,mse.rf,type='l',lty=1,col='blue')
lines(ntrees,mse.boost,type='l',lty=3,col='black')

legend(x=275,y=30,legend=c("Bagging","Random

Forest","Boosting"),lty=c(2,1,3),col=c("red","blue","black"))

Importance measure
rf.boston =

randomForest(medv~.,data=Boston,subset=train,mtry=4,ntree=100,importanc
e=TRUE)

figure(2)
varImpPlot(rf.boston)

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 1

M1586.002500 Information Engineering for CE Engineers

In-Class Material: Class 22

Support Vector Machine (ISL Chapter 9)

 Maximal margin classifier: Separate the classes by a linear boundary, i.e. hyperplane

 Support vector classifier: Allow some observations to be on the incorrect side of the

margin, or even the incorrect side of the hyperplane

 Support vector machine: Handle non-linear decision boundary by employing kernels

1. Maximal Margin Classifier

(a) Definition of hyperplane

In a 𝑝-dimensional space, a hyperplane is a flat affine subspace of dimension (𝑝 − 1)

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 = 0

(b) Classification using a separating hyperplane

𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 > 0 if 𝑦𝑖 = 1

𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 < 0 if 𝑦𝑖 = −1

𝑦𝑖 ∙ (𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 > 0 for all 𝑖 = 1, … , 𝑛

(c) Maximal margin hyperplane (optimal separating hyperplane)

Perfectly separating hyperplane for which the margin is largest, i.e. the hyperplane that
has the farthest minimum distance to the training observations

Margin: minimal distance from the observations to the hyperplane

Support vectors Hyperplanes

Margin

mailto:junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 2

(d) Construction of the maximal margin hyperplane – optimization problem: find the
hyperplane maximizing the minimum distance
(How? Using so-called Lagrange multipliers)

 maximize
𝛽0,𝛽1,…,𝛽𝑝

𝑀

 subject to ∑ 𝛽𝑗
2𝑝

𝑗=1 = 1,

 𝑦𝑖 ∙ (𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝) ≥ 𝑀, ∀ 𝑖 = 1, 2, … , 𝑛

where 𝑦𝑖 ∙ (𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝) is the distance from a point (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝) to the

hyperplane 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 = 0.

Recall perpendicular distance 𝑑 from a point (𝑥0, 𝑦0) to the line 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0:

𝑑 =
|𝑎𝑥0 + 𝑏𝑥0 + 𝑐|

√𝑎2 + 𝑏2

Therefore, distance 𝑑 from a point (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝) to the hyperplane 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +

⋯ + 𝛽𝑝𝑋𝑝 = 0 is

𝑑 =
𝑦𝑖(𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝)

 √∑ 𝛽𝑗
2𝑝

𝑗=1

= 𝑦𝑖(𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝)

Note: Only observations that lie on the margin affect the hyperplane during
optimization, i.e. lies strictly on the correct side of the margin does not affect the
support vector classifier

 “Support vector”

(e) Limitations of the maximal margin classifier

Case1: Non-separable

mailto:junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 3

Case2: Sensitive to the individual observations

2. Support Vector Classifier (Soft margin classifier)

(a) Goals

Greater robustness to individual observations

Better classification for most of the training observations

 Correctly separate most of the training observations into the two classes, but may
misclassify a few observations

(b) Optimization problem for construction of support vector classifier

 maximize
𝛽0,𝛽1,…,𝛽𝑝,𝜖1,…,𝜖𝑛

𝑀

 subject to ∑ 𝛽𝑗
2𝑝

𝑗=1 = 1,

 𝑦𝑖 ∙ (𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝) ≥ 𝑀 ∙ (1 − 𝜖𝑖),

 𝜖𝑖 ≥ 0, ∑ 𝜖𝑖
𝑛
𝑖=1 ≤ 𝐶

 where

 𝜀: Slack variable

 𝐶: Nonnegative tuning parameter

(c) Slack variable 𝜀

Indicate where the observation is located

e.g. 𝜖𝑖 > 0: 𝑖th observation is on the wrong side of the margin

 𝜖𝑖 > 1: 𝑖th observation is on the wrong side of the hyperplane

mailto:junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 4

(d) Nonnegative tuning parameter 𝐶

Determines the number and severity of the violations to the margin and to the
hyperplane that will be tolerated

Bias-variance trade-off: can be chosen via cross-validation technique

- Small 𝐶: seeking narrow margins that are rarely violated  highly fit to the data
 low bias but high variance

- Large 𝐶: seeking wide margins and allow more violations  fitting the data less
hard  more biased but have lower variance

By “cost” command in R (inverse value of 𝐶)

Random number generation
set.seed(10111)
x = matrix(rnorm(40), 20, 2)
y = rep(c(-1, 1), c(10, 10))
x[y == 1,] = x[y == 1,] + 1
plot(x, col = y + 3, pch = 19)

Classification using SVM

Cost = 0.1 Cost = 0.5

Cost = 1 Cost = 100

mailto:junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 5

install.packages("e1071")
dat=data.frame(x=x, y=as.factor(y))
library(e1071)
dat = data.frame(x, y = as.factor(y))
svmfit = svm(y ~ ., data = dat, kernel = "linear", cost = 100, scale =

FALSE)
print(svmfit)

Plot SVM
make.grid = function(x, n = 75) {
 grange = apply(x, 2, range)
 x1 = seq(from = grange[1,1], to = grange[2,1], length = n)
 x2 = seq(from = grange[1,2], to = grange[2,2], length = n)
 expand.grid(X1 = x1, X2 = x2)
}
xgrid = make.grid(x)
xgrid[1:10,]

ygrid = predict(svmfit, xgrid)
plot(xgrid, col = c("red","blue")[as.numeric(ygrid)], pch = 20, cex = .2)
points(x, col = y + 3, pch = 19)
points(x[svmfit$index,], pch = 5, cex = 2)

beta = drop(t(svmfit$coefs)%*%x[svmfit$index,])
beta0 = svmfit$rho # 'rho' of svm object is the "negative intercept"

plot(xgrid, col = c("red", "blue")[as.numeric(ygrid)], pch = 20, cex = .2)
points(x, col = y + 3, pch = 19)
points(x[svmfit$index,], pch = 5, cex = 2)
abline(beta0 / beta[2], -beta[1] / beta[2])
abline((beta0 - 1) / beta[2], -beta[1] / beta[2], lty = 2)
abline((beta0 + 1) / beta[2], -beta[1] / beta[2], lty = 2)

(e) Limitation of support vector classifier

Case: non-linear decision boundaries

3. Support Vector Machine

(a) Mapping to higher dimensional space

Analogous to the attempts to move beyond nonlinearity (CM 18, CM 19)

For example, using 𝑋1, 𝑋1
2, 𝑋2, 𝑋2

2, … , 𝑋𝑝, 𝑋𝑝
2 instead of 𝑋1, 𝑋2, … , 𝑋𝑝

Huge computational cost is accompanied

mailto:junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 6

(b) Support vector machine (SVM)

The linear support vector classifier can be represented as follows (See p. 420 of ESL
for the proof):

𝑓(𝑥) = 𝛽0 + ∑ 𝛼𝑖⟨𝑥, 𝑥𝑖⟩

𝑖∈𝑆

where,

 ⟨𝑥, 𝑥𝑖⟩ = ∑ 𝑥𝑗𝑥𝑖𝑗
𝑝
𝑗=1

 𝑆 represents the collection of support vectors

Can replace the inner product ⟨𝑥, 𝑥𝑖⟩ with a generalization 𝐾(𝑥𝑖 , 𝑥𝑖′) called a kernel

(c) Common kernel functions

 Linear: 𝐾(𝑥, 𝑥𝑖) = ∑ 𝑥𝑗𝑥𝑖𝑗
𝑝
𝑗=1

 Polynomial (of degree 𝑑): 𝐾(𝑥, 𝑥𝑖) = (1 + ∑ 𝑥𝑗𝑥𝑖𝑗
𝑝
𝑗=1)

𝑑

 Radial: 𝐾(𝑥, 𝑥𝑖) = exp (−𝛾 ∑ (𝑥𝑗 − 𝑥𝑖𝑗)
2𝑝

𝑗=1)

(d) Example

Polynomial kernel

Radial kernel

Gamma = 1 Gamma = 10

Degree = 3 Degree = 9

mailto:junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

 7

(e) Pros and cons

Pros

 Effective in high dimensional spaces

 Can utilize different kernel function for various decision functions

 Add kernel function together to take into account even more complex behaviors

Cons

 Poor performance when 𝑝 > 𝑛

 Do not directly provide probability estimates

mailto:junhosong@snu.ac.kr

