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M1586.002500 Information Engineering for CE Engineers 
In-Class Material: Class 21 

Tree-Based Methods (ISL Chapter 8) 
 
1. Trees Versus Linear Models 

(a) Model forms: 

Linear model: () =  + ∑   

Regression Tree: () = ∑  ∙ 1(∈)   
where 1(∈) = 1 if  ∈ , and 0 otherwise. 

(b) Linear models are preferable when the given features and the response can be well 
approximated by linear relationship 

 

(c) Trees are preferable when there is a highly non-linear and complex relationship 
between the features and the response 

 

or for the sake of interpretability and visualization 
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2. Advantages and Disadvantages of Trees  

(a) Advantages 
 
- Trees can be displayed graphically, and are easily interpreted even by a non-expert 

(especially if the trees are small) 

- Some people believe that decision trees more closely mirror human decision-making  

- Trees can easily handle qualitative predictor without the need to create dummy 
variables 

(b) Disadvantages 
 
- Trees generally do not have the same level of predictive accuracy as other advanced 

approaches for regression and classification 

- Trees can be very non-robust, i.e. a small change in data can cause a large change 
in the final estimated tree 

Note: the predictive performance of trees can be substantially improved by a________ 
many decision trees, using methods like bagging, random forests, and boosting. 
 

3. Techniques to Improve Trees (1): Bagging (“Bootstrap Aggregation”)  

(a) Strategy: By averaging a set of observations, reduce the high variance of a single tree,  
i.e. avoid overfitting 

Note: Given a set of  independent observations , ⋯ , , each with 
variance , the variance of their mean is given by / 

(b) Procedure: 

(1) Generate B different bootstrapped training data set. 
Recall: Bootstrap artificially generates a large set of data from a given smaller data 

set by randomly sampling the data points with replacement. 

(2) For each of the B training sets, evaluate a deep, not pruned (i.e. high variance and 
low bias) tree, ,  = 1,⋯ , . 

(3) Make predictions ∗() using  and aggregate to obtain the final solution  (): 
For regression, take the average, i.e.  () = ∑ ∗() / 
For classification, determine by majority vote among the B predictions 

(c) Out-of-Bag (OOB) error estimation 

- Efficient way to estimate the test error of a bagged model 
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- Useful especially for large data-set for which cross-validation would be 
computationally onerous 

- Motivation: One can show that on average, each bagged tree uses around two-thirds 
of the observations (Why? Homework) 

- Method: Predictions are made on each observation using around /3 trees that have 
not used the observation, and aggregate the result for all observations to get OOB 
error 

- OOB error is a valid estimate of the test error (For B sufficiently large, OOB error is 
virtually equivalent to leave-one-out cross-validation error) 

(d) Variable importance measure 

- In contrast to a single tree, utilizing multiple trees makes it hard to interpret the 
resulting model 

- Alternatively, by for each predictor, one can quantify the relative importance measure 
by computing the mean decrease in reference error measure, e.g. RSS during split 
across the B trees, i.e. the larger the mean value, the more important the predictor is 

 
4. Techniques to Improve Trees (2): Random Forests 

(a) Strategy: By de-correlating  the trees in bagging, obtain higher reduction in variance  
               than bagging 

Note: If the observations , ⋯ ,  are NOT independent, the variance of their mean is 
greater than by /. Bootstrapping generates highly correlated samples. 

(b) Method: For each split in each tree, only a fresh sample of  predictors are considered  
              among p predictors 

- Typically,  ≈  is chosen 
- Equivalent to bagging when  =  
- Small  is desirable when a large number of predictors are correlated 

Large B allows us to avoid overfitting. In practice, it is typical to choose B sufficiently large 
for the error rate to have settled down 

 
5. Techniques to Improve Trees (3): Boosting 

(a) Strategy: Instead of fitting a tree directly into a given set of data (i.e. fitting the data  
               hard), sequentially fit a decision tree to the r_______ of current tree (i.e. learn  
               slowly) 

(b) Procedure (in regression): 

(1) Set () = 0 and  =  for all  in the training set. 
(: the response of ith observation) 
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(2) For  = 1,⋯ , , repeat: 

(2-1) Fit a tree  with  splits ( + 1 terminal nodes) to the training data (, ). 
(2-2) Update  by adding in a shrunken version of the new tree: () ← () + () 
(2-3) Update the residuals,  ←  − () 
until  is sufficiently small to meet the stopping criterion. 

(3) Output the boosted model, () = ()
  

(c) Parameters: 

(1) The number of trees B: Unlike bagging and random forests, boosting can lead to 
overfitting if B is too large, although overfitting tends to occur slowly if at all. → Cross-validation to select B is required 

(2) The shrinkage parameter , a small positive number: This controls the rate at which 
boosting learns. Typical values are 0.01 or 0.001. → The smaller , the larger B 

(3) The number d of splits in each tree (interaction depth): This controls the complexity 
of the boosted ensemble. Often  = 1 works well, i.e. stump, consisting of a single 
split (à leads to an additive model) 
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Example 3 (Bagging, random forests, and boosting): Using the Boston data set, predict 
medv (median value of owner-occupied homes) based on other 13 predictors. 
 
Using R package “randomForest” for bagging and random forests, and “gbm” for boosting, 
the sets of trees with size from 5 to 2,500 have been examined. For random forests,  =4 ≈ √13 is used, and for boosting,  = 4 and  = 0.1 are used. The mean squared errors of 
test data are obtained as 
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In the figure, for all of the three approaches, 100 trees appear to be enough for the error 
measure to settle down. Throughout the experiments, random trees and boosting show 
comparative performance to each other while both outperforming bagging. 
 
The importance of each variable can be measured using bagging or random forests. Using 
the random forest with 100 trees, the importance of variables is quantified as 
 

 
 

On the right-hand side is the mean decrease of accuracy in predictions on the OOB 
samples when a given variable is excluded from the model. On the left-hand side is a 
measure of the total decrease in node impurity that results from splits over that variable, 
averaged over all trees. While the two measures agree overall, there is a slight difference in 
the order and the relative magnitude of quantified importance between variables. 
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library(randomForest) 
library(gbm) 
library(MASS) 
attach(Boston) 
 
## Example 3 (Bagging, random forests, boosting) 
 
set.seed(1) 
train=sample(1:nrow(Boston),nrow(Boston)/2) 
boston.test = Boston[-train,"medv"] 
 
ntrees = 1:500 
for (i in ntrees) { 
  bag2.boston = 

randomForest(medv~.,data=Boston,subset=train,mtry=13,ntree=i) 
  rf2.boston = 

randomForest(medv~.,data=Boston,subset=train,mtry=4,ntree=i) 
  boost2.boston = 

gbm(medv~.,data=Boston[train,],distribution="gaussian",n.trees=i,intera
ction.depth=4) # default value for option shrinkage = 0.1 

   
  yhat.bag = predict(bag2.boston,newdata=Boston[-train,]) 
  yhat.rf = predict(rf2.boston,newdata=Boston[-train,]) 
  yhat.boost = predict(boost2.boston,newdata=Boston[-train,],n.trees=i) 
   
  if (i==ntrees[1]) { 
    mse.bag = mean((yhat.bag-boston.test)^2) 
    mse.rf = mean((yhat.rf-boston.test)^2) 
    mse.boost = mean((yhat.boost-boston.test)^2) 
  } else { 
    mse.bag = c(mse.bag,mean((yhat.bag-boston.test)^2)) 
    mse.rf = c(mse.rf,mean((yhat.rf-boston.test)^2)) 
    mse.boost = c(mse.boost,mean((yhat.boost-boston.test)^2)) 
  } 
} 
 
# figure(1) 
plot(ntrees,mse.bag,type='l',lty=2,ylab='Mean Squared Error (Test 

data)',xlab='Number of Trees',ylim=c(10,30),col='red') 
lines(ntrees,mse.rf,type='l',lty=1,col='blue') 
lines(ntrees,mse.boost,type='l',lty=3,col='black') 
 
legend(x=275,y=30,legend=c("Bagging","Random 

Forest","Boosting"),lty=c(2,1,3),col=c("red","blue","black")) 
 
# Importance measure 
rf.boston = 

randomForest(medv~.,data=Boston,subset=train,mtry=4,ntree=100,importanc
e=TRUE) 

# figure(2) 
varImpPlot(rf.boston) 
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M1586.002500 Information Engineering for CE Engineers 

In-Class Material: Class 22 

Support Vector Machine (ISL Chapter 9) 

 
 
 Maximal margin classifier: Separate the classes by a linear boundary, i.e. hyperplane 

 Support vector classifier: Allow some observations to be on the incorrect side of the 

margin, or even the incorrect side of the hyperplane 

 Support vector machine: Handle non-linear decision boundary by employing kernels 

 
 
1. Maximal Margin Classifier 

(a) Definition of hyperplane 

In a 𝑝-dimensional space, a hyperplane is a flat affine subspace of dimension (𝑝 − 1) 

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 = 0 

(b) Classification using a separating hyperplane 

𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 > 0 if 𝑦𝑖 = 1 

𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 < 0 if 𝑦𝑖 = −1 

 

𝑦𝑖 ∙ (𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 > 0 for all 𝑖 = 1, … , 𝑛 

 

(c) Maximal margin hyperplane (optimal separating hyperplane) 

Perfectly separating hyperplane for which the margin is largest, i.e. the hyperplane that 
has the farthest minimum distance to the training observations 
 
Margin: minimal distance from the observations to the hyperplane  
 

         

 

Support vectors Hyperplanes 

Margin 

mailto:junhosong@snu.ac.kr
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(d) Construction of the maximal margin hyperplane – optimization problem: find the 
hyperplane maximizing the minimum distance 
(How? Using so-called Lagrange multipliers) 
 

  maximize
𝛽0,𝛽1,…,𝛽𝑝

𝑀 

       subject to ∑ 𝛽𝑗
2𝑝

𝑗=1 = 1, 

       𝑦𝑖 ∙ (𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝) ≥ 𝑀, ∀ 𝑖 = 1, 2, … , 𝑛  

 

where 𝑦𝑖 ∙ (𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝) is the distance from a point (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝) to the 

hyperplane  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 = 0. 

 

Recall perpendicular distance 𝑑 from a point (𝑥0, 𝑦0) to the line 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0: 
 

𝑑 =
|𝑎𝑥0 + 𝑏𝑥0 + 𝑐|

√𝑎2 + 𝑏2
 

 

Therefore, distance 𝑑 from a point (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝) to the hyperplane 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +

⋯ + 𝛽𝑝𝑋𝑝 = 0 is 

 

𝑑 =
𝑦𝑖(𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝)

 √∑ 𝛽𝑗
2𝑝

𝑗=1

= 𝑦𝑖(𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝) 

Note: Only observations that lie on the margin affect the hyperplane during 
optimization, i.e. lies strictly on the correct side of the margin does not affect the 
support vector classifier  

 “Support vector”  

(e) Limitations of the maximal margin classifier 

Case1: Non-separable 
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Case2: Sensitive to the individual observations 

       

 

 
2. Support Vector Classifier (Soft margin classifier) 

(a) Goals 

Greater robustness to individual observations 

Better classification for most of the training observations 

 Correctly separate most of the training observations into the two classes, but may 
misclassify a few observations 

(b) Optimization problem for construction of support vector classifier 

 

     maximize
𝛽0,𝛽1,…,𝛽𝑝,𝜖1,…,𝜖𝑛

𝑀 

          subject to ∑ 𝛽𝑗
2𝑝

𝑗=1 = 1, 

    𝑦𝑖 ∙ (𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝) ≥ 𝑀 ∙ (1 − 𝜖𝑖), 

    𝜖𝑖 ≥ 0,   ∑ 𝜖𝑖
𝑛
𝑖=1 ≤ 𝐶 

 

  where 

  𝜀: Slack variable 

  𝐶: Nonnegative tuning parameter 

(c) Slack variable 𝜀 

Indicate where the observation is located 

e.g. 𝜖𝑖 > 0: 𝑖th observation is on the wrong side of the margin 

       𝜖𝑖 > 1: 𝑖th observation is on the wrong side of the hyperplane 
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(d) Nonnegative tuning parameter 𝐶 

Determines the number and severity of the violations to the margin and to the 
hyperplane that will be tolerated 

Bias-variance trade-off: can be chosen via cross-validation technique 

- Small 𝐶: seeking narrow margins that are rarely violated  highly fit to the data 
 low bias but high variance 

- Large 𝐶: seeking wide margins and allow more violations  fitting the data less 
hard  more biased but have lower variance 

By “cost” command in R (inverse value of 𝐶) 

 

 
 

# Random number generation 
set.seed(10111) 
x = matrix(rnorm(40), 20, 2) 
y = rep(c(-1, 1), c(10, 10)) 
x[y == 1,] = x[y == 1,] + 1 
plot(x, col = y + 3, pch = 19) 
 
# Classification using SVM 

Cost = 0.1 Cost = 0.5 

Cost = 1 Cost = 100 
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# install.packages("e1071") 
dat=data.frame(x=x, y=as.factor(y)) 
library(e1071) 
dat = data.frame(x, y = as.factor(y)) 
svmfit = svm(y ~ ., data = dat, kernel = "linear", cost = 100, scale = 

FALSE) 
print(svmfit) 
 
# Plot SVM 
make.grid = function(x, n = 75) { 
  grange = apply(x, 2, range) 
  x1 = seq(from = grange[1,1], to = grange[2,1], length = n) 
  x2 = seq(from = grange[1,2], to = grange[2,2], length = n) 
  expand.grid(X1 = x1, X2 = x2) 
} 
xgrid = make.grid(x) 
xgrid[1:10,] 
 
ygrid = predict(svmfit, xgrid) 
plot(xgrid, col = c("red","blue")[as.numeric(ygrid)], pch = 20, cex = .2) 
points(x, col = y + 3, pch = 19) 
points(x[svmfit$index,], pch = 5, cex = 2) 
 
beta = drop(t(svmfit$coefs)%*%x[svmfit$index,]) 
beta0 = svmfit$rho # 'rho' of svm object is the "negative intercept" 
 
plot(xgrid, col = c("red", "blue")[as.numeric(ygrid)], pch = 20, cex = .2) 
points(x, col = y + 3, pch = 19) 
points(x[svmfit$index,], pch = 5, cex = 2) 
abline(beta0 / beta[2], -beta[1] / beta[2]) 
abline((beta0 - 1) / beta[2], -beta[1] / beta[2], lty = 2) 
abline((beta0 + 1) / beta[2], -beta[1] / beta[2], lty = 2) 

(e) Limitation of support vector classifier 

Case: non-linear decision boundaries 

            

3. Support Vector Machine 

(a) Mapping to higher dimensional space 

Analogous to the attempts to move beyond nonlinearity (CM 18, CM 19) 

For example, using 𝑋1, 𝑋1
2, 𝑋2, 𝑋2

2, … , 𝑋𝑝, 𝑋𝑝
2  instead of 𝑋1, 𝑋2, … , 𝑋𝑝 

Huge computational cost is accompanied 
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(b) Support vector machine (SVM) 

The linear support vector classifier can be represented as follows (See p. 420 of ESL 
for the proof): 

𝑓(𝑥) = 𝛽0 + ∑ 𝛼𝑖⟨𝑥, 𝑥𝑖⟩

𝑖∈𝑆

 

where,  

  ⟨𝑥, 𝑥𝑖⟩ = ∑ 𝑥𝑗𝑥𝑖𝑗
𝑝
𝑗=1  

  𝑆 represents the collection of support vectors 

Can replace the inner product ⟨𝑥, 𝑥𝑖⟩ with a generalization 𝐾(𝑥𝑖 , 𝑥𝑖′) called a kernel 

(c) Common kernel functions 

 Linear: 𝐾(𝑥, 𝑥𝑖) = ∑ 𝑥𝑗𝑥𝑖𝑗
𝑝
𝑗=1  

 Polynomial (of degree 𝑑): 𝐾(𝑥, 𝑥𝑖) = (1 + ∑ 𝑥𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )

𝑑
 

 Radial: 𝐾(𝑥, 𝑥𝑖) = exp (−𝛾 ∑ (𝑥𝑗 − 𝑥𝑖𝑗)
2𝑝

𝑗=1  ) 

(d) Example  

Polynomial kernel 

                   

Radial kernel 

                   

Gamma = 1 Gamma = 10 

Degree = 3 Degree = 9 

mailto:junhosong@snu.ac.kr


Seoul National University                                                                                         Instructor: Junho Song 
Dept. of Civil and Environmental Engineering                                                           junhosong@snu.ac.kr 

 

 7 

(e) Pros and cons 

Pros 

 Effective in high dimensional spaces 

 Can utilize different kernel function for various decision functions 

 Add kernel function together to take into account even more complex behaviors 

Cons 

 Poor performance when 𝑝 > 𝑛 

 Do not directly provide probability estimates  
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