
Data Separation Techniques

Jihong Kim

Dept. of CSE, SNU

Outline

• Introduction to Data Separation

• Data Separation Techniques for NAND flash
– 2-Queue Based Approach

– HASH Based Approach

– Program Context Approach

Data Separation Techniques (Jihong Kim/SNU) 2

Classification of Data

• Key factors in classifying data
– Frequency

• More frequently accessed data are likely to be accessed
again in near future

– Recency (i.e., closeness to the present)
• Many access patterns in workloads exhibit high temporal

localities

• Recently accessed data are more likely to be accessed again
in near future

Data Separation Techniques (Jihong Kim/SNU) 3

Data Separation in Computer

• Data Cache
– Caching hot data in the memory space in advance, we can

significantly improve system performance
• Sensor Network using FlashDB

– In FlashDB, the B-tree node can be stored either in read-optimized
mode or in write-optimized mode, whose decision can be easily
made on the basis of a hot data identification algorithm

• Hard Disk Drive
– Determine hot blocks and cluster them together so that they can be

accessed more efficiently with less physical arm movement
• Hot data identification has a big potential to be exploited by

many other applications

Data Separation Techniques (Jihong Kim/SNU) 4

Data Separation in NAND

• Garbage collection
– Reduce garbage collection cost by collecting and

storing hot data to the same block

• Wear leveling
– Improve flash reliability by allocating hot data to the

flash blocks with low erase count

Data Separation Techniques (Jihong Kim/SNU) 5

Hot Data Identifier in FTL

Data Separation Techniques (Jihong Kim/SNU) 6

Efficient Hot Data Identification

• Effective capture of recency information as well
as frequency information

• Small Memory Consumption
– Need to store hotness information

– Limited SRAM size for FTL

• Low Computational Overhead
– It has to be triggered whenever every write request is

issued

Data Separation Techniques (Jihong Kim/SNU) 7

2-Level LRU

• Maintains hot list and candidate list
– Operate under LRU
– Save memory space (i.e. sampling-based approach)

• Performance is sensitive to the sizes of both lists
• High computational overhead

Data Separation Techniques (Jihong Kim/SNU) 8

A Multi-Hash-Function Approach

• A Multi-Hash-Function Framework
– Identify each data request using hash value

• Identify hot data in a constant time
– Just access hash table without search

• Reduce the required memory space
– A lot of data requests share a hotness information

entry of hash tables

Data Separation Techniques (Jihong Kim/SNU) 9

A Multi-Hash-Function Framework

• Component
– K independent hash functions

– M-entry hash table

– C-bit counters

• Operation
– Status Update

• Updating of the status of an LBA

• Storing frequency information

– Hotness Checkup
• The verification of whether an LBA is for hot

data

– Decay
• Decaying of all counters

• Storing recency information

10Data Separation Techniques (Jihong Kim/SNU)

Status Update (Counter Update)

• A write is issued to the FTL

• The corresponding LBA y is hashed simultaneously by K given hash functions.

• Each counter corresponding to the K hashed values (in the hash table) is
incremented by one to reflect the fact that the LBA is written again

11Data Separation Techniques (Jihong Kim/SNU)

1 0 1 0

0 0 1 0

1 0 0 1

1 1 0 0

z

f1(z)

f2(z)

f3(z)

f4(z)

Logical Block
Addr.

1

1

1 0

1

+1

+1

+1

+1

Hash
Function

Increase
Counter

(K=4, H = 2)

Hotness Checkup

• An LBA is to be verified as a location for hot data.

• Check if the H most significant bits of every counter of the K hashed
values contain a non-zero bit value.

12Data Separation Techniques (Jihong Kim/SNU)

1 0 1 1

0 1 1 1

0 0 1 1

1 0 0 0

1 0 1 0

1 1 1 1

1 1 0 1

y

z

f1(z)

f2(z)

f3(z)

f4(z)

Logical
Block Addr.

H most significant Bits

1 0

0 1

0 0

1 0

1 0

1 1

1 0

Contain 1

Contain only 0

Contain 1

Contain 1

COLD

HOT

Contain 1

Contain 1

Contain 1
Contain 1

(K=4, H = 2)

Decay

• For every given number of sectors have been
written, called the “decay period” of the write
numbers, the values of all counters are divided
by 2 in terms of a right shifting of their bits.

13Data Separation Techniques (Jihong Kim/SNU)

1 0 1 1

0 0 1 1

1 0 1 0

1 1 0 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 0 1

0 0 1

1 0 1

1 1 0

(K=4, H = 2)

An Implementation Strategy

• In order to reduce the chance of false identification, only counters
of the K hashed values that have the minimum value are
increased

14Data Separation Techniques (Jihong Kim/SNU)

z

f1(z)

f2(z)

f3(z)

f4(z)

5

3

7

8

Basic

+1

+1

+1

+1

6

4

8

9

Enhanced

minimum!

Performance Evaluation

• Metrics

– Impacts of Hash-Table Sizes

– Runtime Overheads

• Experiment Setup

– Number of hash functions: 2

– Counter size: 4 bits

– Flash memory size: 512 MB

– Hot-data threshold: 4

15Data Separation Techniques (Jihong Kim/SNU)

Impacts of Hash-Table Sizes (1)

• The locality of data access (decay period: 5117 writes)

16Data Separation Techniques (Jihong Kim/SNU)

Impacts of Hash-Table Sizes (2)

• Ratio of false hot data identification for various hash table sizes

17Data Separation Techniques (Jihong Kim/SNU)

Runtime Overheads

Unit: CPU cycles

Multi-Hash-Function
Framework (2KB)

Two-Level LRU List*
(512/1024)

Average
Deviation
Standard

Average
Deviation
Standard

Checkup 2431.358 97.98981 4126.353 2328.367

Status Update 1537.848 45.09809 12301.75 11453.72

Decay 3565 90.7671 N/A N/A

18Data Separation Techniques (Jihong Kim/SNU)

Problem of Hash-Based Approach

• Accurately captures frequency information
– By maintaining counters

• Cannot appropriately capture recency
information due to its exponential batch decay
process (i.e., to decreases all counter values by a
half at a time)

Data Separation Techniques (Jihong Kim/SNU) 19

Multiple BF-based scheme

• Overview
– Multiple bloom filters

• To capture finer‐grained recency

• To reduce memory space and overheads

– Multiple hash functions
• To reduce false identification

• Frequency
– Does not maintain access counters

• Recency
– Different recency coverage

20Data Separation Techniques (Jihong Kim/SNU)

Bloom Filter (from Wikipedia)

• A space-efficient probabilistic data structure
proposed by Bloom in 1970

• Used to test if 𝛼𝛼 ∈ 𝑆𝑆
• Allows False Positives, but no False Negatives

– “possibly in 𝑆𝑆” or “definitely not in 𝑆𝑆”

Data Separation Techniques (Jihong Kim/SNU) 21

Basic Operations

22Data Separation Techniques (Jihong Kim/SNU)

Capturing Frequency

• No access counters
– Needs a different mechanism

• For frequency capturing
– Chooses one of BFs in a round-robin manner

– If the chosen BF has already recorded the LBA
• Records to another BF available.

– Shortcut decision
• If all BFs store the LBA information

– Simply define the data as hot

 The Number of BFs can provide frequency information

23Data Separation Techniques (Jihong Kim/SNU)

Capturing Recency

• After a decay period (T)
– Choose one of V-BFs in a round-robin manner

– Erase all information (i.e., reset all bits to 0)

 Each BF retains a different recency coverage.

24Data Separation Techniques (Jihong Kim/SNU)

Recency Coverage

• For finer-grained recency
– Each BF covers a different recency coverage

• The reset BF (BFv): Shortest (latest) coverage

• The next BF (BF1): Longest (oldest) coverage

– Each BF has a different recency value

25Data Separation Techniques (Jihong Kim/SNU)

Example: Hot/Cold Checkup Based on Recency Weight

• Assign a different recency weight to each BF
– Recency value is combined with frequency value for hot data

decision.

26Data Separation Techniques (Jihong Kim/SNU)

1

0

1

…
0

0

1

1

BF0

0

1

1

…
1

0

0

1

BF1

1

1

0

…
0

0

1

0

BF2

0

0

0

…
0

0

0

0

BF3

BF with valid data reset BF

H1

H2

LBA X

w/o a recency weight

Threshold value: 1.75

Frequency value of X = 1 + 0 + 1 = 2

Frequency value of Y = 1 + 1 + 0 = 2

LBA Y

Both HOT!

with a recency weight

Frequency value of X = 0.5x1 + 1x0 + 1.5x1 = 2

Weight 0.5 1 1.5
Frequency value of Y = 0.5x1 +1x 1 + 0 = 1.5

Hot!

Cold!

Performance Evaluation

• Evaluation setup
– Four schemes

• Multiple bloom filter scheme (refer to as MBF)

• Multiple hash function scheme (refer to as MHF)

– Four realistic workloads

• Financial1, MSR (prxy volume 0), Distilled, and Real SSD

27Data Separation Techniques (Jihong Kim/SNU)

Performance Evaluation

• Performance metrics
– False identification rate

• Try to compare each identification result of each scheme
whenever a request is issued

– Memory consumption

– Runtime overhead
• Measure CPU clock cycles per operation

28Data Separation Techniques (Jihong Kim/SNU)

False Identification Rate
(MBF vs. MHF)

29Data Separation Techniques (Jihong Kim/SNU)

Memory Impact and Computational
Overheads

30Data Separation Techniques (Jihong Kim/SNU)

Problems of Hot/cold Separator
– Problem 1: Wide variations on future update times

– Problem 2: If there is no clear temporal locality, hot/cold separator does not work

31

Hot block

Page 0

Page 1

Page 2

Page 3

Timeline

Program A Program B

Hot/cold Separator

Hot data may be invalidated
in different times because of
different update localities

Data Separation Techniques (Jihong Kim/SNU)

ORA: Oracle Predictor on Future Update Time

• Perfect knowledge on future update times of data

• Can sort data based on the future update times of
data

• An FTL with ORA can gather data with similar
update times into the same block

• Can be used as lower bound of GC

32Data Separation Techniques (Jihong Kim/SNU)

Motivation Example

33

R0 R1 R2 R3

R0

R1

R2

R3

Block0
(Hot block)

R4 R5 R6 R7

R4

R5

R6

R7

Block1
(Hot block)

R0(1)

R2(2)

R6(3)

R7(4)
Block0

R1(13)

R3(14)
R4(15)

R5(16)
Block1

Hot/cold Separator ORA

HOT
FTL with Hot-cold Separator
writes according to the
request order if all requests
are hot

FTL with ORA gathers data
with similar update times

R0 is updated at
time 1
R1 is updated at
time 13

If a GC process was triggered at time 10,

4 copies + 2 erasures 1 erasure

1 13 2 14 15 16 3 4Update time

Data Separation Techniques (Jihong Kim/SNU)

Hot/cold Separator vs. ORA

• ORA can reduce GC overhead significantly

34

78% 76%

Update time is a more important factor in data separation
technique than frequency of updates

Data Separation Techniques (Jihong Kim/SNU)

Basic Idea

• Program Context-Aware Data Separation Technique

– Predicts update times of data based on program
behavior

– A program behaves similarly when the same
program context is executed

– Indentifies what program contexts repeatedly
generate data with similar update times

35Data Separation Techniques (Jihong Kim/SNU)

Overview of Program Context

• A program context represents an execution path which generates write
requests

• Identification
• Each program context is identified by summing program counter values of each

execution path of function calls
Reference
Chris Gniady, and Ali R. Butt, and Y. Charlie Hu, “Program Counter Based Pattern Classification in Buffer Caching ,” OSDI, 2004

36

a()

b()

write()

Functions in
execution paths

main()

c()

d()

e()

f()

System call

PC1 PC2 PC3 PC4

g()

h()

PC : Program Context

Data Separation Techniques (Jihong Kim/SNU)

Program Context–Based Update Time Prediction

• Indirectly predict future update times of data by exploiting program contexts

37

a()

b()

System call

Program
Context

(PC)

Logical
Block

Address

PC1

Time

write()

c()

d()

e()

f()

PC2 PC3

a()

b()

PC1

c()

d()

e()

f()

PC2 PC3

PC1

PC2

g()

h()

PC4

PC3

PC4

g()

h()

PC4

a()

b()

PC1

c()

d()

e()

f()

PC2 PC3

Update

These data are updated in a similar period when PC1, PC2, and PC3 are executedData Separation Techniques (Jihong Kim/SNU)

Separating Data using Program Contexts

38

Logical
Block

Address

Time

Program Context 1
Program Context 2
Program Context 3Sequential

Update

Separates these data based on PCs

Simultaneously updated group 1 Simultaneously updated group 2

Block 0 Block 1 Block 2 Block 3

Data generated by Program Context 2 Data generated by Program Context 1
and Program Context 3

FTL with this data separator stores data based on simultaneously updated group

Data Separation Techniques (Jihong Kim/SNU)

Experimental Environments (1)
• Used a trace-driven NAND flash memory simulator

– Parameters

• Techniques for comparison
– HASH: Hash-based hot/cold separation technique
– ORA: Oracle predictor on future update times of data

39

Flash Translation Layer

Mapping Scheme Page-level mapping

GC Triggering 5%

Flash memory

Read Time (1 page) 25usec

Write Time (1 page) 200usec

Erase Time (1 block) 1200usec

Data Separation Techniques (Jihong Kim/SNU)

Experimental Environments (2)

• Benchmarks characteristics

40

Benchmarks Scenario The number of writes (unit: page) The number of updates (unit: page)

cscope Linux source code examination 17575 15398

gcc Building Linux Kernel 10394 3840

viewperf Performance measurement 7003 119

tpc-h Accesses to database 23522 20910

tpc-r Accesses to database 21897 18803

multi1 cscope + gcc 28400 19428

multi2 cscope + gcc + viewperf 35719 20106

Data Separation Techniques (Jihong Kim/SNU)

Result: Total Execution Time of GC

41

Total execution times for copies
(READ+WRITE) are reduced

Random update (Low locality)

Reduces the total execution time of garbage collection on
average 58% over HASH.

Data Separation Techniques (Jihong Kim/SNU)

Reference

• J. Hsieh et al, "Efficient on-line identification of hot data for flash-
memory management," SAC 2005.

• D. Park et al., “Hot Data Identification for Flash-based Storage
Systems Using Multiple Bloom Filters”, MSST 2011

• K. Ha et al., “A Program Context-Aware Data Separation Technique
for Reducing Garbage Collection Overhead in NAND Flash Memory,”
SNAPI 2011

Data Separation Techniques (Jihong Kim/SNU) 42

	Data Separation Techniques
	Outline
	Classification of Data
	Data Separation in Computer
	Data Separation in NAND
	Hot Data Identifier in FTL
	Efficient Hot Data Identification
	2-Level LRU
	A Multi-Hash-Function Approach
	A Multi-Hash-Function Framework
	 Status Update (Counter Update)
	Hotness Checkup
	Decay
	An Implementation Strategy
	Performance Evaluation
	Impacts of Hash-Table Sizes (1)
	Impacts of Hash-Table Sizes (2)
	Runtime Overheads
	Problem of Hash-Based Approach
	Multiple BF-based scheme
	 Bloom Filter (from Wikipedia)
	Basic Operations
	Capturing Frequency
	Capturing Recency
	Recency Coverage
	Example: Hot/Cold Checkup Based on Recency Weight
	Performance Evaluation
	Performance Evaluation
	False Identification Rate�(MBF vs. MHF)
	Memory Impact and Computational Overheads
	Problems of Hot/cold Separator
	ORA: Oracle Predictor on Future Update Time
	Motivation Example
	Hot/cold Separator vs. ORA
	Basic Idea
	Overview of Program Context
	Program Context–Based Update Time Prediction
	Separating Data using Program Contexts
	Experimental Environments (1)
	Experimental Environments (2)
	Result: Total Execution Time of GC
	Reference

