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Outline

• Introduction to Data Separation 

• Data Separation Techniques for NAND flash
– 2-Queue Based Approach

– HASH Based Approach

– Program Context Approach
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Classification of Data

• Key factors in classifying data 
– Frequency

• More frequently accessed data are likely to be accessed 
again in near future

– Recency (i.e., closeness to the present)
• Many access patterns in workloads exhibit high temporal 

localities

• Recently accessed data are more likely to be accessed again 
in near future
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Data Separation in Computer

• Data Cache
– Caching hot data in the memory space in advance, we can 

significantly improve system performance
• Sensor Network using FlashDB

– In FlashDB, the B-tree node can be stored either in read-optimized 
mode or in write-optimized mode, whose decision can be easily 
made on the basis of a hot data identification algorithm

• Hard Disk Drive
– Determine hot blocks and cluster them together so that they can be 

accessed more efficiently with less physical arm movement
• Hot data identification has a big potential to be exploited by 

many other applications
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Data Separation in NAND

• Garbage collection 
– Reduce garbage collection cost by collecting and 

storing hot data to the same block

• Wear leveling 
– Improve flash reliability by allocating hot data to the 

flash blocks with low erase count
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Hot Data Identifier in FTL
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Efficient Hot Data Identification

• Effective capture of recency information as well 
as frequency information

• Small Memory Consumption
– Need to store hotness information

– Limited SRAM size for FTL

• Low Computational Overhead
– It has to be triggered whenever every write request is 

issued
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2-Level LRU

• Maintains hot list and candidate list
– Operate under LRU
– Save memory space (i.e. sampling-based approach)

• Performance is sensitive to the sizes of both lists
• High computational overhead
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A Multi-Hash-Function Approach

• A Multi-Hash-Function Framework
– Identify each data request using hash value

• Identify hot data in a constant time
– Just access hash table without search

• Reduce the required memory space
– A lot of data requests share a hotness information 

entry of hash tables
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A Multi-Hash-Function Framework

• Component
– K independent hash functions

– M-entry hash table

– C-bit counters

• Operation
– Status Update

• Updating of the status of an LBA

• Storing frequency information

– Hotness Checkup
• The verification of whether an LBA is for hot 

data

– Decay
• Decaying of all counters

• Storing recency information
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Status Update (Counter Update)

• A write is issued to the FTL

• The corresponding LBA y is hashed simultaneously by K given hash functions.

• Each counter corresponding to the K hashed values (in the hash table) is 
incremented by one to reflect the fact that the LBA is written again
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Hotness Checkup

• An LBA is to be verified as a location for hot data.

• Check if the H most significant bits of every counter of the K hashed 
values contain a non-zero bit value.

12Data Separation Techniques (Jihong Kim/SNU)

1 0 1 1

0 1 1 1

0 0 1 1

1 0 0 0

1 0 1 0

1 1 1 1

1 1 0 1

y

z

f1(z)

f2(z)

f3(z)

f4(z)

Logical 
Block Addr. 

H most significant Bits

1 0

0 1

0 0

1 0

1 0

1 1

1 0

Contain 1

Contain only 0

Contain 1

Contain 1

COLD

HOT

Contain 1

Contain 1

Contain 1
Contain 1

(K=4, H = 2 ) 



Decay

• For every given number of sectors have been 
written, called the “decay period” of the write 
numbers, the values of all counters are divided 
by 2 in terms of a right shifting of their bits.
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An Implementation Strategy

• In order to reduce the chance of false identification, only counters 
of the K hashed values that have the minimum value are 
increased
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Performance Evaluation

• Metrics

– Impacts of Hash-Table Sizes

– Runtime Overheads

• Experiment Setup

– Number of hash functions: 2

– Counter size: 4 bits

– Flash memory size: 512 MB

– Hot-data threshold: 4
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Impacts of Hash-Table Sizes (1)

• The locality of data access (decay period: 5117 writes)
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Impacts of Hash-Table Sizes (2)

• Ratio of false hot data identification for various hash table sizes
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Runtime Overheads

Unit: CPU cycles

Multi-Hash-Function
Framework (2KB)

Two-Level LRU List*
(512/1024)

Average 
Deviation 
Standard

Average 
Deviation 
Standard

Checkup 2431.358 97.98981 4126.353 2328.367

Status Update 1537.848 45.09809 12301.75 11453.72

Decay 3565 90.7671 N/A N/A
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Problem of Hash-Based Approach

• Accurately captures frequency information
– By maintaining counters

• Cannot appropriately capture recency
information due to its exponential batch decay 
process (i.e., to decreases all counter values by a 
half at a time)
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Multiple BF-based scheme

• Overview
– Multiple bloom filters 

• To capture finer‐grained recency

• To reduce memory space and overheads

– Multiple hash functions 
• To reduce false identification

• Frequency 
– Does not maintain access counters

• Recency
– Different recency coverage
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Bloom Filter            (from Wikipedia)

• A space-efficient probabilistic data structure 
proposed by Bloom in 1970

• Used to test if 𝛼𝛼 ∈ 𝑆𝑆
• Allows False Positives, but no False Negatives

– “possibly in 𝑆𝑆” or “definitely not in 𝑆𝑆”
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Basic Operations
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Capturing Frequency

• No access counters
– Needs a different mechanism

• For frequency capturing 
– Chooses one of BFs in a round-robin manner 

– If the chosen BF has already recorded the LBA
• Records to  another BF available. 

– Shortcut decision
• If all BFs store the LBA information 

– Simply  define the data as hot 

 The Number of BFs can provide  frequency information
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Capturing Recency

• After a decay period (T) 
– Choose one of V-BFs in a round-robin manner

– Erase all information (i.e., reset all bits to 0)

 Each BF retains a different recency coverage.
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Recency Coverage

• For finer-grained recency
– Each BF covers a different recency coverage

• The reset BF (BFv): Shortest (latest) coverage 

• The next BF (BF1): Longest (oldest) coverage 

– Each BF has a different recency value
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Example: Hot/Cold Checkup Based on Recency Weight

• Assign a different recency weight to each BF
– Recency value is combined with frequency value for hot data 

decision.
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Performance Evaluation

• Evaluation setup 
– Four schemes 

• Multiple bloom filter scheme (refer to as MBF)

• Multiple hash function scheme (refer to as MHF) 

– Four realistic workloads 

• Financial1, MSR (prxy volume 0), Distilled, and Real SSD
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Performance Evaluation

• Performance metrics 
– False identification rate

• Try to compare each identification result of each scheme 
whenever a request is issued

– Memory consumption

– Runtime overhead 
• Measure CPU clock cycles per operation
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False Identification Rate
(MBF vs. MHF)
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Memory Impact and Computational 
Overheads

30Data Separation Techniques (Jihong Kim/SNU)



Problems of Hot/cold Separator
– Problem 1: Wide variations on future update times

– Problem 2: If there is no clear temporal locality, hot/cold separator does not work
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ORA: Oracle Predictor on Future Update Time

• Perfect knowledge on future update times of data

• Can sort data based on the future update times of 
data 

• An FTL with ORA can gather data with similar 
update times into the same block 

• Can be used as lower bound of GC
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Motivation Example
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Hot/cold Separator vs. ORA

• ORA can reduce GC overhead significantly
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78% 76%

Update time is a more important factor in data separation 
technique than frequency of updates
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Basic Idea

• Program Context-Aware Data Separation Technique

– Predicts update times of data based on program 
behavior

– A program behaves similarly when the same 
program context is executed

– Indentifies what program contexts repeatedly 
generate data with similar update times
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Overview of Program Context

• A  program context represents an execution path which generates write 
requests

• Identification
• Each program context is identified by summing program counter values of each 

execution path of function calls
Reference
Chris Gniady, and Ali R. Butt, and Y. Charlie Hu, “Program Counter Based Pattern Classification in Buffer Caching ,”  OSDI, 2004
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Program Context–Based Update Time Prediction

• Indirectly predict future update times of data by exploiting program contexts 
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Separating Data using Program Contexts
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Experimental Environments (1)
• Used a trace-driven NAND flash memory simulator

– Parameters

• Techniques for comparison
– HASH: Hash-based hot/cold separation technique 
– ORA: Oracle predictor on future update times of data
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Flash Translation Layer

Mapping Scheme Page-level mapping

GC Triggering 5%

Flash memory

Read  Time (1 page) 25usec

Write Time (1 page) 200usec

Erase Time (1 block) 1200usec
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Experimental Environments (2)

• Benchmarks characteristics
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Benchmarks Scenario The number of writes (unit: page) The number of updates (unit: page)

cscope Linux source code examination 17575 15398

gcc Building Linux Kernel 10394 3840

viewperf Performance measurement 7003 119

tpc-h Accesses to database 23522 20910

tpc-r Accesses to database 21897 18803

multi1 cscope + gcc 28400 19428

multi2 cscope + gcc + viewperf 35719 20106
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Result: Total Execution Time of GC
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Total execution times for copies 
(READ+WRITE) are reduced

Random update (Low locality)

Reduces the total execution time of garbage collection on 
average 58% over HASH.
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Reference

• J. Hsieh et al, "Efficient on-line identification of hot data for flash-
memory management," SAC 2005.

• D. Park et al., “Hot Data Identification for Flash-based Storage 
Systems Using Multiple Bloom Filters”, MSST 2011
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