Chapter 8. Optical Properties

Index of Refraction

Optical properties of materials: Refraction, reflection, absorption, light emission (Relation between them)

• Index of refraction without absorption:

 $r = c/v = \sqrt{\varepsilon_r \mu_r}$ ε_r : dielectric constant μ_r : permeability

• Index of refraction with absorption:

 $r^* = r + i\Gamma$ Γ : absorption index

• Absorption constant (α):

$$\alpha = \frac{2\omega\Gamma}{c} = \frac{4\pi\Gamma}{\lambda}$$

• Relationship between r and α

$$r^2 - \Gamma^2 = \varepsilon_r \mu_r$$

 $r^2 = \varepsilon_r \mu_r + \frac{c^2 \alpha^2}{4\omega^2}$: The refractive index can be determined by first calculating $\alpha(\omega)$ from a specific absorption mechanism.

Reflection

Electric (E_y) and magnetic (H_z) components are continuous and conserved across x = 0

- *I* : Incident electric and magnetic waves
- R: Reflected electric and magnetic waves
- T: Transmitted electric and magnetic waves
- I = R + T [energy conservation]
- ε : dielectric constant
- Γ : absorption index r: index of refraction

For an interface between a vacuum and a material without absorption on either side,

$$R = \frac{(r-1)^2}{(r+1)^2}$$

For an interface between a vacuum and a material with index of refraction (r) and absorption index (Γ),

Reflection

$$R = \frac{(r-1)^2 + \Gamma^2}{(r+1)^2 + \Gamma^2}$$

: For a strongly absorbing material with high Γ , *R* should be unity $(R \rightarrow 1)$

<u>Q: A material with higher absorption index can reflect more light. True or false?</u>

A: The absorbed light cannot penetrate the material (T = 0). Due to energy conservation, the light should be reflected. ($R = I - T \approx 1$)

Summary of absorption processes

- 1) Electron transition from the valence band to higher-lying conduction bands. Continuous high absorption processes. Absorp. Coef. (α) = 10⁵ ~ 10⁶ cm⁻¹
- 2) Electron transition from the valence band to the lowest-lying conduction band with a minimum required energy of the forbidden band gap. Direct or indirect transition.
- 3) Optical transition producing bound electron-hole pair (excitons), requiring less energy than to produce a free electron-hole pair by the system. For free carriers, excitons should be thermally dissociated. The excitons can recombine with the emission of light or phonons.

Summary of absorption processes

- 4) Midgap states by imperfections, such as defects and impurities. Discrete levels within a band gap. Absorp. Coef. $(\alpha) < 10^3 \text{ cm}^{-1}$
- 5) Absorption by free carriers. Transition to higher energy states within the same band or to higher bands. It involves the absorption of both photons and phonons because both *E* an *k* must be change in the transition.
- 6) Reststrahlen absorption (ch. 3) interaction between light wave and lattice wave. (Does not involve electronic transition.)

Higher photon energy is required for transition in order of 1 to 6. ex) E_{ph} in process $1 > E_{ph}$ in process $2 > E_{ph}$ in process $3 > E_{ph}$ in process $4 \dots$

Summary of absorption processes

Transition across the band gap

• The band-to-band transition are the cause of the fundamental absorption edge of the material, and hence of the apparent *color* by *transmission* of many semiconductors.

Transition across the band gap

Green + Red

Band-to-band transition

k

[Direct band gap] Transition between the conduction band and valence band extrema at the same value of *k* Energy conservation

$$\hbar\omega_{pt} = E_{Gd} + \frac{\hbar^2 k_0^2}{2m_r^*}$$

 E_{Gd} : direct band gap k_0 : k value for optical transition m_r^* : reduced mass

 $\frac{1}{m_r^*} = \frac{1}{m_e^*} + \frac{1}{m_h^*}$

Momentum conservation

 $\Delta k \sim K_{photon} \sim 0$

Transmission probability (absorption coef.)

 $\alpha \propto \left(\hbar\omega_{pt} - E_{Gd}\right)^{1/2}$

: The values of α increases rapidly with photon energy larger than EG to values in the range of $10^5 \sim 10^6$ cm⁻¹. This relation holds only for a small range of photon energies greater than E_G. In the plot of α^2 vs. $\hbar \omega_{pt}$, the intercept is E_{Gd} .

Band-to-band transition

Indirect band gap materials

Ge

- E_{Gi} =0.74 eV corresponding to a conduction band minimum at the 111 zone face
- A direct band gap of 0.90 eV at *k*=0

Si

- E_{Gi} =1.17 eV in the 100 direction about 85% of the way to the zone face
- A direct band gap of 2.5 eV at k=0

Indirect band gap materials

Degenerate semiconductors

- "Degenerate" means that E_F lies in a conduction band. (different from "degenerate" in chapter 3)
- Optical absorption edge ~ a function of carrier density if free electrons fill up the lowest states in the conduction band by a large density of impurities.

Excitons

: Bound electron-hole pairs, Neutral in charge

Excitons

• Binding energy or dissociation energy of exciton

$$E_{ex, n} = \frac{M_r/m}{\varepsilon_r^2 n^2} E_H$$

where E_H is the ground state energy of the isolated hydrogen atom (-13.5 eV) and M_r is a reduce mass

$$\frac{1}{M_r} = \frac{1}{{m_e}^*} + \frac{1}{{m_h}^*}$$

• Exciton binding energy is a strong function of dielectric constant ε_r

 $E_H = -13.5 \ eV$ $m_e^* = m_h^* = m$ $\varepsilon_r = 10 \Rightarrow E_{ex, n} = -\frac{0.067}{n^2} eV$:Dissociation rate of exciton is high at high T due to thermal energy.

• An exciton can diffuse in a crystal and transport energy (binding energy of exciton). The total energy of an exciton is

$$E = \frac{\hbar K_{ex}^2}{2(m_e^* + m_h^*)} + E_{ex,n}$$

Kinetic energy of exciton for direct $\begin{cases} K_{ex} \approx 0 \text{ for direct transition} \\ K_{ex} \approx K_{pn} \text{ for indirect transition} \end{cases}$

Excitons

Shift of direct transition peaks shows that binding energy of exciton increases as the thickness of a material decreases due to dielectric screening and spatial confinement.

Excitons in 2D

Large binding E of excitons in $2D \sim 300-400 \text{ meV}$

Observation of exciton complexes, such as trions (e-eh pairs) and bi-excitons (e-h-e-h pairs)

Transport of excitons in stacked 2D heterostructure

Imperfections

: localized energy levels by imperfections that exist only in relatively small regions of space around imperfections. They are indicated by a short line in a flat band diagram.

- Deep imperfections
 - : highly localized
 - Uncertainty Δx is small, but Δk is large.
- Shallow imperfections
 - : small energy difference between the imperfection energy levels and conduction (valence) band edge Uncertainty Δx is large, but Δk is small.

Deep imperfection (transition for all range of *k*)

Imperfections

- Transition ① and ②: absorption consists of a threshold followed by a region of higher absorption.
- Transition ③: a narrow peak at the energy separation between the two levels.
- Types of imperfections
 - Point imperfections: vacancy or misplaced atoms
 - Impurities
 - Larger structural defects: dislocations, grain boundaries, surfaces

Absorption constant for the transitions of ① and ②

$$\alpha = S_{opt}N_{I}$$

where S_{opt} is the optical cross section (10⁻¹⁵ to 10⁻¹⁷ cm²) and N_{I} the density of imperfections (10¹⁴ to 10¹⁸ cm⁻³)

Free carriers

: Indirect process involving both a photon and a phonon

Indirect absorption involving both a photon and a phonon $\alpha \propto \lambda^n \quad (n=2\sim3)$

Relation between absorption and conductivity $\alpha_{\sigma} \propto \sigma/rc\varepsilon_0$

Plasma Resonance Absorption

- Optical transition due to collective action of the carriers
- Collection of free electrons to be displayed a distance ξ by an electric field E

$$E = \frac{nq\xi}{\varepsilon_0}$$
$$nm_e^* \frac{d^2\xi}{dt^2} = -nqE = -4\pi n^2 q^2 \xi$$
$$\frac{d^2\xi}{dt^2} + \omega_p^2 \xi = 0$$
$$\omega_p = \left(\frac{nq^2}{\varepsilon_0 m_e^*}\right)^{\frac{1}{2}}$$

• When the frequency of the incident radiation is equal to the plasma resonance frequency, strong absorption occurs.

Photoelectronic effects

: related to light emission or light detection. (=optoelectronics)

• Results of absorption

- If electrons are excited to conduction band, the free carrier density increases to enhance the conductivity (Photoconductivity)
- When the excited electrons give up their energy and return to their initial states, the energy can be emitted as photons (Luminescence)
 ex) photoluminescence, cathodoluminescence, electron-beam induced current (EBIC)

Recombination between free carrier and trapped carrier

Pair-recombination between trapped carriers

Recombination within atomic levels of impurity ionriers

Optical spectra

Intrinsic extrinsic luminescence luminescence

Optical spectra

