Phase and group velocity

SUPERPOSED WAVE OF DIFFERENT FREQUENCIES (VERY SMALL
DIFFERENCE) AND BEATS

We will now discuss the superposition of two waves that have same vibration direction,
same amplitude a, but different frequency and wave number(w,, k,, w,, k,). However, the
frequency difference is very small. This will generate the very interesting “beat”
phenomenon.

Since the phase difference between the vibrations is continually changing, the specification
of some initial nonzero phase difference is in general not of major significance in this case.

S0 we can suppose that the individual vibrations have an initial phase of 0, and hence can
be written as:

E,=acos|w;t—k,z)

E,=acos|w,t—k,z)
Then the sum of these two waves is:
E=E,+E,=a[cos(w, -k, z]|+cos(w,t—K,z]]

Using the following triangular formula

a—ﬁ)

Jcos( 5

cos(a)+cos(f)=2cos( a;ﬁ

We get
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We then introduce the notation of average angular frequency @ and average wave number
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And modulation frequency w_, and modulation wave number k_
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We then get

E=2acos|w,t-k,z)cos(@t—k z)

A
We can make

A=2acos(w,t-k,z) | Amplitude

Then we get

E=Acos(@t-kz)

This means that the resultant superposed wave has an angular frequency ® and its
amplitude varies between 0 and 2a with time t and position z.

The following picture shows the superposition result. Since light waves have very high

frequency, if w, = w,, then O > w,_, which means that A varies slowly but E varies
extremely fast.
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Phase and group velocity

PHASE VELOCITY AND GROUP VELOCITY

Clearly the velocity of a monochrome light equals its equiphase surface propagation velocity.

However, in the case of a superposed wave, we need to carefully define its propagation

velocity.

Let's continue using the superposed wave equation from above:

E=2acos(w,t—k,z)cos(@t—kz)

The superposed wave has two propagation velocities: equiphase surface propagation
velocity (called Phase Velocity Vp), and equiamplitude surface propagation velocity (called

Group Velocity Vg as defined by Rayleigh).

PHASE VELOCITY OF THE SUPERPOSED WAVE:

E=Acos|@t-kz)

Phase velocity Vp can be concluded by keeping the phase a constant: A)

@t—k z=constant 4)

7=
Tk

k

t constant

Then by doing derivative of z we get the Phase Velocity Vp of the superposed wave:

GROUP VELOCITY OF THE SUPERPOSED WAVE:

A=2acos|®,t-k,z)

~

Similarly we can get the Group Velocity Vg by keeping the amplitude a constant:
W, t—k,,z=constant 4)

Following the same steps, we get the Group Velocity of the superposed wave:

_dz _ o,
9 dt  k

when Aw is very small, we then get:

S0 Vg is the partial derivative of w.
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Transverse waves 1n an infinite string

* Transverse waves in an infinite string consider string under
tension.

Element of the string T: tension
¢ , ¢: displacement
o5 L: length of string
4~ 1%
! “ If d¢ is very small,
|
| ds =/ (dx)? + (d8)?
I x ~ dx
Upward force at A Upward force at B
E,, = —Tsin#6 d¢ d¢
E, =T
T ; up {dx dx \dx )
— T2 T2
ds dx

d
Net upward force Fup =T— (di) dx = _E dx= P dx 5 p: linear density



Transverse waves 1n an infinite string

~. Force balance
d?& d?&

dex =p dxﬁ , p:linear density
\ J | ) /
! f
E.p m a
d?é T d?é

: wave equation

dtz~ p dx?

@ Solutions are the harmonic waves
2 Determine the dispersion relation, w (k)
3 Apply the boundary conditions

@ Determine the allowed w,,



Transverse waves 1n an infinite string

* Assume
E(x,t) = Aexpli(kx — wt)} + B expli(kx + wt)}
e Then,
2 d2
s =~
dx? dt?
© T 1/2
> v=—=|-
kK \p
dt? dx?
T
v= ; Vpp = const. = v, = non—dispersive system
w = +/T/p k for an infinite string
k

* All frequencies and all wavelengths are allowed.



Transverse waves 1n a finite string

* Fix the ends of the string. | |L

0

* Boundary conditions §0)=0 & &WL)=0

* From  ¢£0)=0=A4+B - (1)
E(L) =0 = Ae*l + Be7kL  —(2)
OzeikL_e—ikL
21 A
0 = 2isin(kL = — =
isin(kL) k 7 ns L

.‘.k:n’r[/L, n=1,2, -
- Due to boundary conditions (confinement of the wave between

0 and L on the X-axis), frequencies that can exist in the string
are limited.



Transverse waves 1n a finite string

Sn

= Aexp {i (nlzlx — nan/T/p t)} — Aexp {—i (nL—nx + %N/T/p t)}
S nm i

oré, = Csme exp {—l (Tw/T/p t)}

"a standing wave", induced by the boundary condition

nm
Wn ==~ T/p : allowed frequencies

"normal modes"

* Confinement of waves induces the
“quantization” of frequency.

* General solution =) &0




Simple Applications of n(4/2) = L

1. Particle in a box

* An electron 1n a one-dimensional box of E}
the length, L (confined within the box

with high potential walls)

P n=4
* What ener%y levels are allowed for the ~
electrons 11 1t exhibits wave-like
properties: n=3
n- E =L n:l
. 1= 2L 0
* Since =
2 h2
E = p =
2m  2mA?
n’h? . .
E, = ez’ identical with the actual solution

¢ A discrete set of energy levels is allowed.

¢ These energy levels are spaced according to the square of the integers.

¢ The spacing between energy levels decreases as L increases.



Longitudinal waves in a rod

:

A
! ax
5K - i - S(x + Lax)

yyd x S: cross—sectional area

’
™

* Consider the rod 1n the figure with a tensile stress, X (force
per unit area) acting along the X axis.

* Force balance

— Net force in the +x direction on an element of width dx and cross-
sectional area S 1s

ax ax
SX+S—dx|—-SX=S5S—dx
dx dx



Longitudinal waves in a rod

e Define

— p: volume density of the rod

— ¢&: displacement of any cross-section in the x-direction
— Y: Young’s modulus = X/(d &/dx)

e Then,
S ax dx =p(dx-S 4*¢
ax X = P S) g
{ Y A T J
m a
d(Y - dE/dx)  d2¢
dx  Pare?
cf) transverse waves
d?¢ pd?* (wavefunction of d?¢ T d*¢
dx?2 Y dt2 longitudinal waves) dtz  p dx?

o Y1/2 v=9=<1)1/2
v_k_ p k P




Summary of wave systems

§ = Aexpliltkx — wt}]
v=wlk=(T/p)'/?

& = E,explitkk - r — wt)]

1/v*? = EEophho + iUrpo0/w

£, = Aexplilkra — wit}]
w = 2n'/?|sin ka/2|

a2 a2t
— = [1/{TIp}} —
STRING ax? [1/(T1p}} 352
displacement
, 928 08
LIGHT v2g = Erfolito 33 + Hrko0 o=
Chap. 4 _ L
electric and magnetic fields
3¢
LATTICE nk,., - 2’1&;' +népy = -é—f_;
WAVES disol
Chap. 3 isplacement
e ¢ o'V
ELECTRON — = (2m/WP)VY - i(2m/h)-é—
WAVES dx t

Chap. 5 Just mathematical function

¥ = Aexplilkx — wt)]
1f V=0, w=hk*2m




