
CHAPTER 3

SQL

Intro to DB

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 2

Chapter 3: SQL

▪ Overview

▪ Data Definition

▪ Basic Structure

▪ Additional Basic Operations

▪ Set Operations

▪ Null Values

▪ Aggregate Functions

▪ Nested Subqueries

▪ Modification of the Database

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 3

History

▪ IBM Sequel language developed as part of System R project at the IBM San Jose Research

Laboratory

▪ Renamed Structured Query Language (SQL)

▪ ANSI and ISO standard SQL:

 SQL-86, SQL-89, SQL-92

 SQL:1999 (Y2K!), SQL:2003, SQL:2008

▪ Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from

later standards and special proprietary features.

 Not all examples here may work on your particular system.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 4

Create Table Construct

▪ An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

▪ Example:

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2))

▪ insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 5

Domain Types in SQL

▪ char(n): Fixed length character string, with user-specified length n.

▪ varchar(n): Variable length character strings, with user-specified maximum length n.

▪ int: Integer (a finite subset of the integers that is machine-dependent).

▪ smallint: Small integer (a machine-dependent subset of the integer domain type).

▪ numeric(p, d): Fixed point number, with user-specified precision of p digits, with n digits to
the right of decimal point.

▪ real, double precision: Floating point and double-precision floating point numbers, with
machine-dependent precision.

▪ float(n): Floating point number, with user-specified precision of at least n digits.

Null values are allowed in all the domain types.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 6

Integrity Constraints in Create Table

▪ not null

▪ primary key (A1, ..., An)

▪ foreign key (Am, ..., An) references r

Declare dept_name as to be a reference to department.

create table instructor (

ID char(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department)

 primary key declaration on an attribute automatically ensures not null

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 7

And a Few More Relation Definitions

▪ create table student (

ID varchar(5),

name varchar(20) not null,

dept_name varchar(20),

tot_cred numeric(3,0),

primary key (ID),

foreign key (dept_name) references department));

▪ create table takes (

ID varchar(5),

course_id varchar(8),

sec_id varchar(8),

semester varchar(6),

year numeric(4,0),

grade varchar(2),

primary key (ID, course_id, sec_id, semester, year),

foreign key (ID) references student,

foreign key (course_id, sec_id, semester, year) references section);

 Note: sec_id can be dropped from primary key above, to ensure a student cannot be registered for two sections of the same

course in the same semester

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 8

And more still

▪ create table course (

course_id varchar(8) primary key,

title varchar(50),

dept_name varchar(20),

credits numeric(2,0),

foreign key (dept_name) references department));

 Primary key declaration can be combined with attribute declaration as shown above

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 9

Drop and Alter Table Constructs

▪ drop table: deletes all information about the dropped relation from the database.

▪ alter table: used to add or drop attributes to an existing relation

alter table r add A D

where A is the name of the attribute to be added to relation r and D is the domain of A.

 null is assigned to the new attribute for each tuple

alter table r drop A

where A is the name of an attribute of relation r

 (dropping of attributes is not supported by many databases)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 10

Basic Structure of SQL Queries

▪ SQL is based on set and relational operations with certain modifications and
enhancements

▪ A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

 Ais represent attributes

 ris represent relations

 P is a predicate.

▪ The result of an SQL query is a relation.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 11

The select Clause

▪ Find the names of all instructors:

select name

from instructor

▪ An asterisk in the select clause denotes “all attributes”

select *

from instructor

▪ NOTE:

 SQL does not permit the ‘-’ character in names (use ‘_’ in a real implementation).

 SQL names are case insensitive.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 12

The select Clause (cont.)

▪ SQL allows duplicates in relations as well as in query results.

▪ To force the elimination of duplicates, insert the keyword distinct after select.

▪ Find the names of all departments with instructor, and remove duplicates

select distinct dept_name

from instructor

▪ The keyword all specifies that duplicates not be removed



select all dept_name

from instructor

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 13

The select Clause (cont.)

▪ The select clause can contain arithmetic expressions

 +, –, , /

 on constants or attributes of tuples.

▪ The query:

select ID, name, salary/12

from instructor

would return a relation that is the same as the instructor relation, except that the value of the

attribute salary is divided by 12.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 14

The where Clause

▪ Corresponds to the selection predicate of the relational algebra.

▪ Predicate involving attributes of the relations that appear in the from clause.

▪ Find all instructors in Comp. Sci. dept with salary > 80000

select name

from instructor

where dept_name = ‘Comp. Sci.' and salary > 80000

▪ Comparison conditions: >, <, =, <=, >=, !=

▪ Logical connectives: and, or, not

▪ Comparisons can be applied to results of arithmetic expressions

▪ SQL includes a between comparison operator

where salary between 90000 and 100000

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 15

The from Clause

▪ Lists the relations to be scanned in the evaluation of the expression.

▪ Corresponds to the Cartesian product operation of the relational algebra.

▪ Instructor x teaches

select 

from instructor, teaches

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 16

instructor teaches

select  from instructor, teaches

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 17

Joins

▪ For all instructors who have taught some course, find their names and the course ID of the courses they

taught.

select name, course_id

from instructor, teaches

where instructor.ID = teaches.ID

▪ Find the course ID, semester, year and title of each course offered by the Comp. Sci. department

select section.course_id, semester, year, title

from section, course

where section.course_id = course.course_id and

dept_name = ‘Comp. Sci.'

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 18

Schema Diagram for the University

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 19

SQL Examples

▪ Find the IDs of students advised by an instructor named Einstein.
select s_id
from advisor, instructor
where advisor.i_id=instructor.ID and instructor.name=‘Einstein’

▪ Find the IDs of all students who were taught by an instructor named Einstein; make sure there are
no duplicates in the result.

select distinct takes.ID
from takes, section, teaches, instructor
where takes.course_id=section.course_id and

takes.sec_id=section.sec_id and
takes.semester=section.semester and
takes.year=section.year and
section.course_id=teaches.course_id and
section.sec_id=teaches.sec_id and
section.semester=teaches.semester and
section.year=teaches.year and
teaches.ID=instructor.ID and
instructor.name=‘Einstein’

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 20

The Rename Operation

▪ The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

select ID, name, salary/12 as monthly_salary

from instructor

▪ Find the names of all instructors who have a higher salary than some instructor in ‘Comp. Sci’.

select distinct T. name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

▪ S, T are called tuple variables

▪ Keyword as is optional and may be omitted

instructor as T ≡ instructor T

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 21

String Operations

▪ For comparisons on character strings

▪ Patterns are described using special characters:

 percent (%): matches any substring.

 underscore (_). matches any character.

▪ Find all courses whose title includes the substring “data”.

select *

from course

where title like '%data%'

▪ Escape character to specify % and \ within string

like ‘100\%’

▪ A variety of string operations such as

 concatenation (using “||”)

 case conversion, string length, substrings, etc.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 22

Ordering the Display of Tuples

▪ List in alphabetic order all instructors

select *

from instructor

order by name

▪ desc for descending order or asc for ascending order (default)

 order by name desc

▪ Can sort on multiple attributes

 order by dept_name, name

 order by dept-name desc, name asc

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 23

Set Operations

▪ The set operations: union, intersect, except correspond to the relational algebra operations

  −

▪ Each set operation automatically eliminates duplicates

▪ To retain all duplicates use multiset versions:

union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 24

Set Operations (cont.)

▪ Find all customers who have a loan, an account, or both:

(select customer-name from depositor)

union

(select customer-name from borrower)

▪ Find all customers who have both a loan and an account.

(select customer-name from depositor)

intersect

(select customer-name from borrower)

▪ Find all customers who have an account but no loan.

(select customer-name from depositor)

except

(select customer-name from borrower)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 25

Null Values

▪ It is possible for tuples to have a null value, denoted by null, for some of their attributes

▪ null signifies an unknown value or that a value does not exist.

▪ The result of any arithmetic expression involving null is null

 Example: 5 + null returns null

▪ The predicate is null can be used to check for null values.

Find all instructors whose salary is null.

select name

from instructor

where salary is null

 Why not the following?

select name

from instructor

where salary = null

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 26

Null Values and Three Valued Logic

▪ Any comparison with null returns unknown

 Example: 5 < null or null <> null or null = null

▪ Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true,

(unknown or false) = unknown

(unknown or unknown) = unknown

 AND: (true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to unknown

▪ Result of where clause predicate is treated as false if it evaluates to unknown

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 27

Aggregate Functions

▪ Operate on the multiset of values of a column of a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 28

Aggregate Functions (Cont.)

▪ Find the average salary of instructors in the Computer Science department

select avg (salary)

from instructor

where dept_name= ’Comp. Sci.’;

▪ Find the total number of instructors who teach a course in the Spring 2010 semester

select count (distinct ID)

from teaches

where semester = ’Spring’ and year = 2010

▪ Find the number of tuples in the course relation

select count (*)

from course;

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 29

Aggregate Functions – Group By

▪ Find the average salary of instructors in each department

select dept_name, avg (salary)
from instructor
group by dept_name;

 Note: departments with no instructor will not appear in result

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 30

Aggregation (Cont.)

▪ Attributes in select clause outside of aggregate functions must appear in group by list

 /* erroneous query */

select dept_name, ID, avg (salary)

from instructor

group by dept_name;

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 31

Null Values and Aggregates

▪ Total all salaries

select sum (salary)

from instructor

 Above statement ignores null amounts

 result is null if there is no non-null amount

▪ All aggregate operations except count(*) ignore tuples with null values on the aggregated

attributes

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 32

Nested Subqueries

▪ A subquery is

a select-from-where expression that is nested within another query.

▪ Common use of subqueries:

perform tests for set membership, set comparisons, and set cardinality.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 33

Nested Query – Examples

▪ Find courses offered in Fall 2009 and in Spring 2010

▪ Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id in (select course_id

from section

where semester = ’Spring’ and year= 2010);

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id not in (select course_id

from section

where semester = ’Spring’ and year= 2010);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 34

Nested Query – Examples

▪ Find the total number of (distinct) students who have taken course sections taught by the

instructor with ID 10101

▪ Note: Above query can be written in a much simpler manner. The

formulation above is simply to illustrate SQL features

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year

from teaches

where teaches.ID= 10101);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 35

Set Comparison

▪ Find names of instructors with salary greater than that of some (at least one) instructor in the

Biology department.

▪ Same query using > some clause

select name

from instructor

where salary > some (select salary

from instructor

where dept_name = ’Biology’);

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ’Biology’;

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 36

Set Comparison (cont.)

▪ Find the names of all instructors whose salary is greater than the salary of all instructors in

the Biology department.

select name

from instructor

where salary > all (select salary

from instructor

where dept_name = ’Biology’);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 37

Test for Empty Relations

▪ The exists construct returns the value true if the argument subquery is nonempty.

▪ exists r  r  Ø

▪ not exists r  r = Ø

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 38

Correlation Variables

▪ Yet another way of specifying the query “Find all courses taught in both the Fall 2009

semester and in the Spring 2010 semester”

select course_id

from section as S

where semester = ’Fall’ and year= 2009 and

exists (select *

from section as T

where semester = ’Spring’ and year= 2010

and S.course_id= T.course_id);

▪ Correlated subquery

▪ S: Correlation name or correlation variable

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 39

Not Exists

▪ Find all students who have taken all courses offered in the Biology department.

▪ Note that X – Y = Ø  X  Y

▪ Note: Cannot write this query using = all and its variants

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

from course

where dept_name = ’Biology’)

except

(select T.course_id

from takes as T

where S.ID = T.ID));

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 40

Modification of the Database – Deletion

▪ Delete all courses of Appl. Math department

delete from course

where dept_name = ‘Appl. Math’

▪ Delete all tuples in the instructor relation for those instructors associated with a department

located in the Watson building.

delete from instructor

where dept_name in (select dept_name

from department

where building = ’Watson’);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 41

Modification of the Database – Deletion

▪ Delete all instructors whose salary is less than the average salary of instructors.

delete from instructor

where salary< (select avg (salary) from instructor);

 Problem:

as we delete tuples from instructor, the average salary changes

 Solution used in SQL:

1. First, compute avg salary and find all tuples to delete

2. Next, delete all tuples found above

(without recomputing avg or retesting the tuples)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 42

Modification of the Database – Insertion

▪ Add a new tuple to course

insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

▪ or equivalently

insert into course (course_id, title, dept_name, credits)

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

▪ Add a new tuple to student with tot_creds set to null

insert into student

values (’3003’, ’Green’, ’Finance’, null);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 43

Insertion (Cont.)

▪ Add all instructors to the student relation with tot_creds set to 0

insert into student

select ID, name, dept_name, 0

from instructor

▪ The select from where statement is evaluated fully before any of its results are inserted into

the relation

 otherwise queries like the following would cause problems

(if table1 did not have any primary key defined)

insert into table1 select * from table1

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 44

Modification of the Database – Updates

▪ Increase salaries of instructors whose salary is over $100,000 by 3%, and all others receive a

5% raise

 Write two update statements:

update instructor

set salary = salary * 1.03

where salary > 100000;

update instructor

set salary = salary * 1.05

where salary <= 100000;

 The order is important

END OF CHAPTER 3

