
CHAPTER 3

SQL

Intro to DB

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 2

Chapter 3: SQL

▪ Overview

▪ Data Definition

▪ Basic Structure

▪ Additional Basic Operations

▪ Set Operations

▪ Null Values

▪ Aggregate Functions

▪ Nested Subqueries

▪ Modification of the Database

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 3

History

▪ IBM Sequel language developed as part of System R project at the IBM San Jose Research

Laboratory

▪ Renamed Structured Query Language (SQL)

▪ ANSI and ISO standard SQL:

 SQL-86, SQL-89, SQL-92

 SQL:1999 (Y2K!), SQL:2003, SQL:2008

▪ Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from

later standards and special proprietary features.

 Not all examples here may work on your particular system.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 4

Create Table Construct

▪ An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

▪ Example:

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2))

▪ insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 5

Domain Types in SQL

▪ char(n): Fixed length character string, with user-specified length n.

▪ varchar(n): Variable length character strings, with user-specified maximum length n.

▪ int: Integer (a finite subset of the integers that is machine-dependent).

▪ smallint: Small integer (a machine-dependent subset of the integer domain type).

▪ numeric(p, d): Fixed point number, with user-specified precision of p digits, with n digits to
the right of decimal point.

▪ real, double precision: Floating point and double-precision floating point numbers, with
machine-dependent precision.

▪ float(n): Floating point number, with user-specified precision of at least n digits.

Null values are allowed in all the domain types.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 6

Integrity Constraints in Create Table

▪ not null

▪ primary key (A1, ..., An)

▪ foreign key (Am, ..., An) references r

Declare dept_name as to be a reference to department.

create table instructor (

ID char(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department)

 primary key declaration on an attribute automatically ensures not null

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 7

And a Few More Relation Definitions

▪ create table student (

ID varchar(5),

name varchar(20) not null,

dept_name varchar(20),

tot_cred numeric(3,0),

primary key (ID),

foreign key (dept_name) references department));

▪ create table takes (

ID varchar(5),

course_id varchar(8),

sec_id varchar(8),

semester varchar(6),

year numeric(4,0),

grade varchar(2),

primary key (ID, course_id, sec_id, semester, year),

foreign key (ID) references student,

foreign key (course_id, sec_id, semester, year) references section);

 Note: sec_id can be dropped from primary key above, to ensure a student cannot be registered for two sections of the same

course in the same semester

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 8

And more still

▪ create table course (

course_id varchar(8) primary key,

title varchar(50),

dept_name varchar(20),

credits numeric(2,0),

foreign key (dept_name) references department));

 Primary key declaration can be combined with attribute declaration as shown above

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 9

Drop and Alter Table Constructs

▪ drop table: deletes all information about the dropped relation from the database.

▪ alter table: used to add or drop attributes to an existing relation

alter table r add A D

where A is the name of the attribute to be added to relation r and D is the domain of A.

 null is assigned to the new attribute for each tuple

alter table r drop A

where A is the name of an attribute of relation r

 (dropping of attributes is not supported by many databases)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 10

Basic Structure of SQL Queries

▪ SQL is based on set and relational operations with certain modifications and
enhancements

▪ A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

 Ais represent attributes

 ris represent relations

 P is a predicate.

▪ The result of an SQL query is a relation.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 11

The select Clause

▪ Find the names of all instructors:

select name

from instructor

▪ An asterisk in the select clause denotes “all attributes”

select *

from instructor

▪ NOTE:

 SQL does not permit the ‘-’ character in names (use ‘_’ in a real implementation).

 SQL names are case insensitive.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 12

The select Clause (cont.)

▪ SQL allows duplicates in relations as well as in query results.

▪ To force the elimination of duplicates, insert the keyword distinct after select.

▪ Find the names of all departments with instructor, and remove duplicates

select distinct dept_name

from instructor

▪ The keyword all specifies that duplicates not be removed

select all dept_name

from instructor

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 13

The select Clause (cont.)

▪ The select clause can contain arithmetic expressions

 +, –, , /

 on constants or attributes of tuples.

▪ The query:

select ID, name, salary/12

from instructor

would return a relation that is the same as the instructor relation, except that the value of the

attribute salary is divided by 12.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 14

The where Clause

▪ Corresponds to the selection predicate of the relational algebra.

▪ Predicate involving attributes of the relations that appear in the from clause.

▪ Find all instructors in Comp. Sci. dept with salary > 80000

select name

from instructor

where dept_name = ‘Comp. Sci.' and salary > 80000

▪ Comparison conditions: >, <, =, <=, >=, !=

▪ Logical connectives: and, or, not

▪ Comparisons can be applied to results of arithmetic expressions

▪ SQL includes a between comparison operator

where salary between 90000 and 100000

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 15

The from Clause

▪ Lists the relations to be scanned in the evaluation of the expression.

▪ Corresponds to the Cartesian product operation of the relational algebra.

▪ Instructor x teaches

select

from instructor, teaches

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 16

instructor teaches

select from instructor, teaches

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 17

Joins

▪ For all instructors who have taught some course, find their names and the course ID of the courses they

taught.

select name, course_id

from instructor, teaches

where instructor.ID = teaches.ID

▪ Find the course ID, semester, year and title of each course offered by the Comp. Sci. department

select section.course_id, semester, year, title

from section, course

where section.course_id = course.course_id and

dept_name = ‘Comp. Sci.'

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 18

Schema Diagram for the University

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 19

SQL Examples

▪ Find the IDs of students advised by an instructor named Einstein.
select s_id
from advisor, instructor
where advisor.i_id=instructor.ID and instructor.name=‘Einstein’

▪ Find the IDs of all students who were taught by an instructor named Einstein; make sure there are
no duplicates in the result.

select distinct takes.ID
from takes, section, teaches, instructor
where takes.course_id=section.course_id and

takes.sec_id=section.sec_id and
takes.semester=section.semester and
takes.year=section.year and
section.course_id=teaches.course_id and
section.sec_id=teaches.sec_id and
section.semester=teaches.semester and
section.year=teaches.year and
teaches.ID=instructor.ID and
instructor.name=‘Einstein’

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 20

The Rename Operation

▪ The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

select ID, name, salary/12 as monthly_salary

from instructor

▪ Find the names of all instructors who have a higher salary than some instructor in ‘Comp. Sci’.

select distinct T. name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

▪ S, T are called tuple variables

▪ Keyword as is optional and may be omitted

instructor as T ≡ instructor T

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 21

String Operations

▪ For comparisons on character strings

▪ Patterns are described using special characters:

 percent (%): matches any substring.

 underscore (_). matches any character.

▪ Find all courses whose title includes the substring “data”.

select *

from course

where title like '%data%'

▪ Escape character to specify % and \ within string

like ‘100\%’

▪ A variety of string operations such as

 concatenation (using “||”)

 case conversion, string length, substrings, etc.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 22

Ordering the Display of Tuples

▪ List in alphabetic order all instructors

select *

from instructor

order by name

▪ desc for descending order or asc for ascending order (default)

 order by name desc

▪ Can sort on multiple attributes

 order by dept_name, name

 order by dept-name desc, name asc

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 23

Set Operations

▪ The set operations: union, intersect, except correspond to the relational algebra operations

 −

▪ Each set operation automatically eliminates duplicates

▪ To retain all duplicates use multiset versions:

union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 24

Set Operations (cont.)

▪ Find all customers who have a loan, an account, or both:

(select customer-name from depositor)

union

(select customer-name from borrower)

▪ Find all customers who have both a loan and an account.

(select customer-name from depositor)

intersect

(select customer-name from borrower)

▪ Find all customers who have an account but no loan.

(select customer-name from depositor)

except

(select customer-name from borrower)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 25

Null Values

▪ It is possible for tuples to have a null value, denoted by null, for some of their attributes

▪ null signifies an unknown value or that a value does not exist.

▪ The result of any arithmetic expression involving null is null

 Example: 5 + null returns null

▪ The predicate is null can be used to check for null values.

Find all instructors whose salary is null.

select name

from instructor

where salary is null

 Why not the following?

select name

from instructor

where salary = null

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 26

Null Values and Three Valued Logic

▪ Any comparison with null returns unknown

 Example: 5 < null or null <> null or null = null

▪ Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true,

(unknown or false) = unknown

(unknown or unknown) = unknown

 AND: (true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to unknown

▪ Result of where clause predicate is treated as false if it evaluates to unknown

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 27

Aggregate Functions

▪ Operate on the multiset of values of a column of a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 28

Aggregate Functions (Cont.)

▪ Find the average salary of instructors in the Computer Science department

select avg (salary)

from instructor

where dept_name= ’Comp. Sci.’;

▪ Find the total number of instructors who teach a course in the Spring 2010 semester

select count (distinct ID)

from teaches

where semester = ’Spring’ and year = 2010

▪ Find the number of tuples in the course relation

select count (*)

from course;

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 29

Aggregate Functions –Group By

▪ Find the average salary of instructors in each department

select dept_name, avg (salary)
from instructor
group by dept_name;

 Note: departments with no instructor will not appear in result

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 30

Aggregation (Cont.)

▪ Attributes in select clause outside of aggregate functions must appear in group by list

 /* erroneous query */

select dept_name, ID, avg (salary)

from instructor

group by dept_name;

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 31

Null Values and Aggregates

▪ Total all salaries

select sum (salary)

from instructor

 Above statement ignores null amounts

 result is null if there is no non-null amount

▪ All aggregate operations except count(*) ignore tuples with null values on the aggregated

attributes

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 32

Nested Subqueries

▪ A subquery is

a select-from-where expression that is nested within another query.

▪ Common use of subqueries:

perform tests for set membership, set comparisons, and set cardinality.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 33

Nested Query – Examples

▪ Find courses offered in Fall 2009 and in Spring 2010

▪ Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id in (select course_id

from section

where semester = ’Spring’ and year= 2010);

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id not in (select course_id

from section

where semester = ’Spring’ and year= 2010);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 34

Nested Query – Examples

▪ Find the total number of (distinct) students who have taken course sections taught by the

instructor with ID 10101

▪ Note: Above query can be written in a much simpler manner. The

formulation above is simply to illustrate SQL features

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year

from teaches

where teaches.ID= 10101);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 35

Set Comparison

▪ Find names of instructors with salary greater than that of some (at least one) instructor in the

Biology department.

▪ Same query using > some clause

select name

from instructor

where salary > some (select salary

from instructor

where dept_name = ’Biology’);

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ’Biology’;

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 36

Set Comparison (cont.)

▪ Find the names of all instructors whose salary is greater than the salary of all instructors in

the Biology department.

select name

from instructor

where salary > all (select salary

from instructor

where dept_name = ’Biology’);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 37

Test for Empty Relations

▪ The exists construct returns the value true if the argument subquery is nonempty.

▪ exists r r Ø

▪ not exists r r = Ø

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 38

Correlation Variables

▪ Yet another way of specifying the query “Find all courses taught in both the Fall 2009

semester and in the Spring 2010 semester”

select course_id

from section as S

where semester = ’Fall’ and year= 2009 and

exists (select *

from section as T

where semester = ’Spring’ and year= 2010

and S.course_id= T.course_id);

▪ Correlated subquery

▪ S: Correlation name or correlation variable

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 39

Not Exists

▪ Find all students who have taken all courses offered in the Biology department.

▪ Note that X – Y = Ø X Y

▪ Note: Cannot write this query using = all and its variants

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

from course

where dept_name = ’Biology’)

except

(select T.course_id

from takes as T

where S.ID = T.ID));

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 40

Modification of the Database –Deletion

▪ Delete all courses of Appl. Math department

delete from course

where dept_name = ‘Appl. Math’

▪ Delete all tuples in the instructor relation for those instructors associated with a department

located in the Watson building.

delete from instructor

where dept_name in (select dept_name

from department

where building = ’Watson’);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 41

Modification of the Database –Deletion

▪ Delete all instructors whose salary is less than the average salary of instructors.

delete from instructor

where salary< (select avg (salary) from instructor);

 Problem:

as we delete tuples from instructor, the average salary changes

 Solution used in SQL:

1. First, compute avg salary and find all tuples to delete

2. Next, delete all tuples found above

(without recomputing avg or retesting the tuples)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 42

Modification of the Database – Insertion

▪ Add a new tuple to course

insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

▪ or equivalently

insert into course (course_id, title, dept_name, credits)

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

▪ Add a new tuple to student with tot_creds set to null

insert into student

values (’3003’, ’Green’, ’Finance’, null);

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 43

Insertion (Cont.)

▪ Add all instructors to the student relation with tot_creds set to 0

insert into student

select ID, name, dept_name, 0

from instructor

▪ The select from where statement is evaluated fully before any of its results are inserted into

the relation

 otherwise queries like the following would cause problems

(if table1 did not have any primary key defined)

insert into table1 select * from table1

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 3 - 44

Modification of the Database –Updates

▪ Increase salaries of instructors whose salary is over $100,000 by 3%, and all others receive a

5% raise

 Write two update statements:

update instructor

set salary = salary * 1.03

where salary > 100000;

update instructor

set salary = salary * 1.05

where salary <= 100000;

 The order is important

END OF CHAPTER 3

