Precision Design –Airy support

Support positions and deformation:

Deformation varies with the supporting positions, thus it can be optimized for specific application

Beam of distributed load with double support

Weight per unit length=w, Length=L

Let
$$\langle x \rangle = x$$
 if $x \ge 0$, $\langle x \rangle = 0$ if $x < 0$

$$Q(x) = -w + wL/2 < x - L_1 >_{-1} + wL/2 < x - L_2 >_{-1}$$

$$V(x) = - \int Q(x) dx$$

=wx-wL/21>
0
-wL/22> 0 +C₁, and C₁=0 (: V(0)=0)

$$M(x) = EId^2y/dx^2 = -\int V(x)dx$$

$$=-wx^2/2+ wL/2 < x-L_1 > +wL/2 < x-L_2 > +C_2$$
, and $C_2=0$ (: $M(0)=0$)

Eldy/dx= $\int M(x)dx$

$$=-wx^3/6+ wL/4^2+wL/4^2+C_3$$

$$Ely(x) = -wx^4/24 + wL/12 < x-L_1 > 3 + wL/12 < x-L_2 > 3 + C_3x + C_4$$

Applying y(x)=0 at L_1 and L_2

$$Ely(L_1) = -wL_1^4/24 + C_3L_1 + C_4 = 0$$

$$Ely(L_2) = -wL_2^4/24 + C_3L_2 + C_4 = 0$$

Thus

$$C_3 = (wL/24)(L_1^2 + L_2^2) - (wL/12)(L_2 - L_1)^2$$

$$C_4 = wL^4/24 - C_3L_1 = (w/24)[L_1^4 - LL_1(L_2^2 + L_1^2) + 2LL_1(L_2 - L_1)^2]$$

Therefore,

$$\delta(x) = (w/24EI) \left[-x^4 + 2L < x - L_1 >^3 + 2L < x - L_2 >^3 + \left[L(L_2^2 + L_1^2) - 2L(L_2 - L_1)^2 \right] x + L_1^4 - L_1 L \left(L_2^2 + L_1^2 \right) + 2L L_1 (L_2 - L_1)^2 \right]$$

Thus,

$$\underline{\delta(0)} = (w/24EI) \ [\underline{L_1}^4 - \underline{L_1} \underline{L} \ (\underline{L_2}^2 + \underline{L_1}^2) + 2\underline{L}\underline{L_1} (\underline{L_2} - \underline{L_1})^2] \quad \textbf{eq(1)}$$

$$\delta(L/2) = (w/24EI) \quad [-L^4/16 + 2L(L/2 - L_1)^3 + [L(L_2^2 + L_1^2) - 2L(L_2 - L_1)^2](L/2) + L_1^4 - L_1L \\ (L_2^2 + L_1^2) + 2LL_1(L_2 - L_1)^2]$$

=
$$(w/24EI)$$
 [-L⁴/16+L₁⁴+2L(L₂-L₁)³/8+(L₁²+L₂²)(L²/2-L₁L)+(L₂-L₁)²(-L²+2LL₁)]

From
$$L/2-L_1=(L_2-L_1)/2$$
, $-L^2+2LL_1=2L(L_1-L/2)=-2L(L_2-L_1)/2=-L(L_2-L_1)$

Thus,

$$\delta(L/2) = (w/24EI) \left[-L^4/16 + L_1^4 - (3/4)L(L_2 - L_1)^3 + (L_1^2 + L_2^2)L(L_2 - L_1)/2 \right] \text{ eq(2)}$$

For Double support case, $L_1=0$, $L_2=L$, then from eq(1), eq(2) $\delta(0)=0$ $\delta(L/2)= (wL^4/24EI) [-1/16-(3/4)+(1/2)]$ $= (wL^4/24EI) [(-1-12+8)/16]=-(5/384)wL^4/EI=-0.01302wL^4/EI$

Airy Points Support:

Support for standard metre-bars to remove any bending at both ends, it means to locate L_1 , L_2 such that end faces of beams are vertical, that is y'(0)=0 and y'(L)=0. Thus,

$$Ely'(0)=C_3=0$$

$$Ely'(L) = -wL^3/6 + wL(L-L_1)^2/4 + wL(L-L_2)^2/4 = 0$$

Divide by wL;
$$-L^2/6+(L-L_1)^2/4+(L-L_2)^2/4=0$$
,

*12/ L^2 , and remembering $L_1+L_2=L$, and $L_1/L=x$, $L_2/L=1-x$

$$-2+3(1-x)^2+3x^2=0$$
, and $6x^2-6x+1=0$, thus $x=(3\pm\sqrt{3})/6$

Thus
$$L_1/L=(3-\sqrt{3})/6=0.211$$
, $L_2/L=(3+\sqrt{3})/6=0.788$, and

$$L_2$$
- L_1 = $2\sqrt{3}L/6$ = $0.577L$: Airy Points Support

At Airy points support,

$$\delta(0) = (w/24EI)[L_1^4 - L_1L \ (L_2^2 + L_1^2) + 2LL_1(L_2 - L_1)^2]$$

=
$$(wL^4/24EI)[0.211^4-0.211(0.788^2+0.211^2)+2(0.211)(0.577)^2]$$

$$=(wL^4/24EI)[0.00206]$$

$$=0.000086(wL^4/EI)$$

$$\delta(L/2) = (w/24EI) \left[-L^4/16 + L_1^4 - (3/4)L(L_2 - L_1)^3 + (L_1^2 + L_2^2)L(L_2 - L_1)/2 \right]$$

=
$$wL^4/24EI[-1/16+0.211^4-0.75(0.577)^3+(0.211^2+0.788^2)(0.577)/2]$$

$$=(wL^4/24)[-0.0126]$$

$$=-0.000525 \text{wL}^4/\text{EI}$$

Thus deflection, $\delta = \delta(0) - \delta(L/2) = 0.000611 \text{ wL}^4/\text{EI}$

For double support condition from eq(1), eq(2): $L_1=0$, $L_2=L$

$$\delta(0) = 0$$

$$\delta(L/2) = (w/24EI)(-5L^4/16) = -5wL^4/384EI = -0.01302 wL^4/EI$$

 \therefore About 4.7% (\pm 0.000611/0.01302) deflection when compared to the Double Support condition.

*Minimum straightness support points

The straightness due to bending deflection= δ_{max} - δ_{min}

To find the L₁, L₂ such that δ_{max} - δ_{min} be minimum

This condition is to find L₁ such that $\delta(0) = \delta(L/2)$;

From eq(1), eq(2);

Left=24EI
$$\delta$$
(0)/w=L₁⁴-L₁L (L₂²+L₁²)+2LL₁(L₂-L₁)²

Right=24EI
$$\delta$$
(L/2)/w=-L⁴/16+L₁⁴-(3/4)L(L₂-L₁)³+(L₁²+L₂²)L(L₂-L₁)/2

$$/L^4$$
, and let x=L₁/L, then L₂/L=1-x, (L₂-L₁)/L=1-2x

$$x^4-x[(1-x)^2+x^2]+2x(1-2x)^2=-1/16+x^4-0.75(1-2x)^3+[x^2+(1-x)^2](1-2x)/2$$

Left=
$$x^4$$
- $x(1-2x+2x^2)+2x(1-4x+4x^2)=x^4+6x^3-6x^2+x$

Right=
$$-1/16+x^4-0.75[1-3(2x)+3(2x)^2-(2x)^3]-(2x^2-2x+1)(x-1/2)$$

$$=-1/16+x^4-(0.75-4.5x+9x^2-6x^3)-(2x^3-3x^2+2x-1/2)$$

$$=x^4+4x^3-6x^2+2.5x+(-1-12+8)/16$$

Left-Right=
$$2x^3-1.5x+5/16=0$$

By solving the cubic equation by numerical method,

$$L_1=0.223L$$
, $L_2=0.777L$, and $L_2-L_1=0.554L$.

Then
$$\delta(0) = (w/24EI) [L_1^4 - L_1L (L_2^2 + L_1^2) + 2LL_1(L_2 - L_1)^2]$$

=
$$(wL^4/24EI)$$
 [0.223⁴-(0.223)(0.777²+0.223²)+2(0.223)(0.554)²]

$$=wL^4/24EI(-0.00636)=(-0.000265)wL^4/EI$$

The straightness error $=\delta(L_1)-\delta(0)=-\delta(0)=0.000265wL^4/EI$

∴ About 2% (≒0.000265/0.01302) of Double support case

Therefore, the supporting locations for beam elements give very strong influence on the beam bending or deformation, and thus better to be located at the optimum position.