Chapter 4. Light Waves

Light waves

- Electromagnetic waves
- Velocity ~ 3×10^8 m/s in a vacuum
- The spectrum of electromagnetic radiation
 - Visible light

 $\begin{array}{rcl} \text{UV} &\leftarrow & 400 \ nm &\sim & 700 \ nm &\rightarrow & \text{IR} \\ & & \text{blue} & & \text{red} \\ & & 3.1 \ \text{eV} & & 1.7 \ \text{eV} \end{array}$

 γ-ray (10⁻³ nm), X-ray (0.1 nm), UV (10² nm), IR (10⁴ nm), radar (10⁸ nm)

Interactions between EM waves and solids

- Refraction Index of refraction
- Reflection
- Absorption Absorption coefficient=absorption of light with distance in the material Penetration depth=how far the light will travel before being reduced by a factor of e.

Dielectric constant: polarization
 Permeability: magnetization
 Free carrier absorption: electrical conductivity

Maxwell's equations

	Gaussian Units	SI Units
1.	$\nabla \cdot \mathbf{D} = 4\pi\rho$	$\nabla \cdot \mathbf{D} = \rho$
2.	$\nabla \cdot \mathbf{B} = 0$	$\nabla \cdot \mathbf{B} = 0$
3.	$\nabla \times \mathbf{\mathcal{E}} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$	$\nabla \times \mathbf{\mathcal{E}} = -\frac{\partial \mathbf{B}}{\partial t}$
4.	$\nabla \times \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{\mathcal{E}}}{\partial t} + \frac{4\pi \mathbf{J}}{c}$	$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$
D-electric displacement		
	$\mathbf{D} = \varepsilon_{\mathrm{r}} \mathbf{E}$	$\mathbf{D} = \varepsilon_r \varepsilon_o \mathbf{E}$
ε_r —dielectric constant; $\varepsilon_o = (36\pi \times 10^9)^{-1}$ F/m—permittivity		
of free space		
E—electric field		
ρ —charge density		
B-magnetic induction		
	$\mathbf{B} = \mu_{\mathrm{r}} \mathbf{H}$	$\mathbf{B} = \mu_{\rm r} \mu_{\rm o} \mathbf{H}$
μ_r —permeability; $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$ —permeability of		
free space		
H-magnetic field		
$\mathbf{J} = \sigma \mathbf{\mathcal{E}}$ —current density; σ —electrical conductivity		

TABLE 4.1 Maxwell's Equations

Mathematical generalization of an experimentally observed phenomenon.

- Maxwell's first equation: $\nabla \cdot D = \rho$
 - Coulomb's law

: force on a charge q' due to a charge q separated by "free spacing"

$$F = \frac{qq'}{4\pi\varepsilon_0 r^2}$$
(SI)

 ε_0 = the permittivity of free space

$$\varepsilon_0 = 8.85 \times 10^{-12} \, F/m$$

• Electric field in free space

$$F = q' E_q (E_q: \text{ electric field of } q)$$

$$\rightarrow E_q = \frac{q}{4\pi\varepsilon_0 r^2}$$

- In a polarizable (not free space) medium, polarization should be considered.
- Polarization: ability to produced a local separation of charges in the material (formation of dipoles) due to interaction with the electric field \rightarrow dielectric constant (ε_r)

- Polarization can arise from several sources including the contribution from the lattice ions and electron themselves.
- The electric field in the medium now is modified to include the polarization effect.

$$E_q = \frac{q}{4\pi\varepsilon_r\varepsilon_0 r^2}$$
(SI)

 ε_r = relative permittivity = relative dielectric constant

• The polarization *P* is defined as the electric dipole moment per unit volume induced by the electric field.

P = Np = Nqd

N: volume density of dipoles

p: dipole moment

d: distance between charges

• The polarization *P* in an isotropic homogeneous medium is proportional to *E*.

 $P = \chi E = \varepsilon_0 \chi E$ (SI) χ : dielectric susceptiblity

• Let's define the electric displacement *D* to take into account effects on the electric field *E* caused by the polarization *P*.

$$D = \varepsilon_0 E + P$$
 (SI) $\therefore D = \varepsilon_r \varepsilon_0 E$

$$D = \varepsilon_r \varepsilon_0 E = \varepsilon_0 E + P$$

=\varepsilon_0 E + \varepsilon_0 \chi E
=\varepsilon_0 E + \varepsilon_0 \\varepsilon_0 E + \varepsilon_0 \\varepsilon_0 E + \varepsilon_0 \\varepsilon_0 \\varepsilon_0 \\varepsilon_0 \\varepsilon_0 \\varepsilon_0 \\v

 $\varepsilon_r = 1 + \chi$

$$\varepsilon_r = 1 + \sum_i \chi_i$$
 (SI)

 $\chi_L \sim$ polarization of lattice atoms, $\chi_e \sim$ polarization of electron distribution

• The polarization mechanisms depends on the frequency.

 $\varepsilon_{r(lo)} = 1 + \chi_L + \chi_e$ at low frequencies ex) atoms are charged and binding is ionic.

 $\varepsilon_{r(hi)} = 1 + \chi_e$ at high frequencies

→ We can compare $\varepsilon_{r(lo)}$ and $\varepsilon_{r(hi)}$ to find out the type of bonding. χ_L is large for ionic bonding and small for covalent bonding.

$$\begin{aligned} \varepsilon_r \Big|_{low \, \omega} &\gg \varepsilon_r \Big|_{high \, \omega} & \text{for ionic bonding} \\ \varepsilon_r \Big|_{low \, \omega} &\simeq \varepsilon_r \Big|_{high \, \omega} & \text{for covalent bonding} \end{aligned}$$

• Consider the sphere with radius *r* of which the charge *q* in located at the center.

 E_q : lines of force radiating out radially from the charge q with spherical symmetry. $E_{q(r)}$: surface density of lines of force passing through a sphere with radius r.

$$E_q = \frac{q}{4\pi\varepsilon_r\varepsilon_0 r^2}$$

• We can figure out the electronic field as the charge density per unit area at the distance *r* from the charge.

$$E_{q(r)} \propto \text{surface density of line of force } (c.f.F = q'E_q)$$

 $\propto \frac{1}{r^2}$ because area is proportional to r^2

 $E = -\nabla \phi$

 ϕ : electrostatic potential (volt)

: Spatial dependence of electrostatic potential (or electric field) in the presence of charge density

$$E = -\frac{d\phi}{dx}$$

$$\frac{dE}{dx} = \frac{\rho}{\varepsilon_r \varepsilon}$$

$$\begin{bmatrix} \frac{d^2\phi}{dx^2} = -\frac{\rho}{\varepsilon_r \varepsilon_0} & \text{or } \nabla^2 \phi = -\frac{\rho}{\varepsilon_r \varepsilon} \\ \text{[Poisson's equation]} \end{bmatrix}$$

The second Maxwell equation

• This equation is on the magnetic field.

- The above equation is simply an expression of the fact that there are no isolated magnetic poles (unlike isolated electric charges).
- All lines of forces are closed.
- Similarity between electric field & magnetic field
 - Electric field $D, E, P, \chi, \varepsilon_r$
 - Magnetic field $B, H, M, \kappa \mu_r$

The second Maxwell equation

• Application of magnetic field to a material induces magnetization.

$$\begin{split} M &= \kappa H \quad \text{(SI)} \\ B &= \mu_r \mu_0 H \quad \text{(SI)} \\ \mu_r &= \text{relative permeability} \\ \mu_0 &= \text{permeability of free space} = 4\pi \times 10^{-7} \text{H/m} \end{split}$$

$$B = \mu_0 (H + M) \quad \text{(SI)}$$

$$\mu_r = 1 + \kappa \quad \text{(SI)}$$

 $\nabla \cdot B = 0$ $\nabla \cdot H = 0$ for isotropic, homogeneous materials