Chapter 5. Matter Waves



Matter waves

* We were able to derive the wave equations for waves in a
string or for electromagnetic waves from a knowledge of the
medium in which the waves propagate.

* We construct a formal equation that will meet very general
requirements that matter often exhibits wave-like properties,
such as electron diffraction.
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* How can we construct the wave equation for matter waves?



Matter waves

* The desired solution may have the form like
Y — Aei(kx—a)t) (1)

* The features the matter wave equation should include are the energy E
and the momentum p, which are common between the “particle” and the
“wave”.
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 If we assume that the matter wave equation has the harmonic solutions as
the above, then
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Schrodinger time dependent wave equation

* Since the energy of a particle 1s given by

E=(p*/2m)+V,
a reasonable choice of a wave equation is
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* The above equation 1s the Schrodinger time-dependent wave
equation.

* The equation must be used if we want to describe processes
related to dynamic transition, such as in optical absorption
and carrier relaxation.



Schrodinger time-independent wave equation

 If we are not concerned with the dynamic changes of energy state, but
concerned with the question of what energy states are allowed in the
presence of a particular potential energy V(X, Y, 2), so called stationary
states of the system, the states can be expressed as

Y(x,y,2,t) = P(x,y,2)e " (5)
i.e. The dependence of ¥ on the coordinates can be
separated from the dependence of ¥ on time.

* Substitution of the equation (5) into (4) leads to
A2 d2

fl(x)l/) = El/) = _%W + V(X)l/) for 1-D
h7 A @) E = 0| for 1— 6
of [~ 5——5=+ [V(x) = E](x) = 0| for I-D (6)
2
or —;—mvzzp + [V(x,y,z) —E]y =0| for3-D (7)

Time—independent Schrodinger equation



Schrodinger time-independent wave equation

* Procedure for solving the wave equation

l.e. obtaining a set of ; with corresponding allowed energy values E,

1. Obtain the general solution 1 (x) for the particular V of
interest.

2. Retain only mathematically well behaved solution, 1.e.
single valued —
not zero
continous o

. . — may limit E

continous derivatives

finite

square integrable —

3. Apply boundary conditions.
— may limit E_



y(x)

* What is y(x)?

 Physical significance of y(x) can be associated at least with
the real quantity wy*

» Suppose that a plot of vy = |lﬂ|2 VS X representing a
“particle” has the dependence on X shown 1n the below figure.
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y(x)

» Two interpretations of |y| dxdydz.

(D The probability of finding the particle between X and X+dx
or within dxdydz of (X, Y, 2).
<“Where is the particle likely to be”>

2 Represent the density function for the “particle”

— e.g., —qlv| represents a spatial distribution of charge
corresponding to a single electron.

— collapse to a specific location during measurement with
a probability o« density function

— The probability of measuring a particular point is
proportional to the magnitude of the density function |y
at that point.

<Particle does not have a position>



y(x)

Since 1n either interpretation,
“square integrable”.

w|* is a probability, it must be

2
f J |Y| dxdydz = constant

When the wave function 1s multiplied by an appropriate constant
A such that

2
A? ﬁ Y| dxdydz =1

The wave function is said to be normalized, and A is called the
normalization constant.

A normalized wave function satisfies

U |l/)|2 dxdydz = 1 (8)



y(x)

* To be used as a probability, the wave function must be normalized.
2
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* In spherical coordinates

2w M 0O
j j j |Y(r,8,)|?>r?sinf drdfdp =1 (10)
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* Three important systems allow exact solutions.

@ V=0for0<x<L, A free electron model of a confined electron

1 : : :
@ V= > gx?, Linear harmonic oscillator (F=-gXx)

2

®v= 249 Hydrogenic atom (Z=1, hydrogen)
AtegE, T’ yaros  YETO8




Free electron model of a confined electron

“Particle in a box”

. . 1-D case
* The Schrodinger equation becomes
2 2 — — —
_h dl/jgx)—Et//(X):O (1) V =0 V=0 V=00
2m  dx
* The solution of the above equation 0 L

has the form.

. i V =ow forx<0, Xx>L
w(X)=Ae™ + Be (12)

* Substitution eq. 12 into eq. 11 Y ousige = 0
results in w#0for0<x<L
E:hk, 0<x<L




Free electron model of a confined electron

* B.C’s
@D w=0atx=0andL
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Free electron model of a confined electron
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» Number of nodes inw =(n—1)

* More nodes correspond to the higher energy.



Free electron model of a confined electron

* For large n

4 E, =3.8x10"°L7 eV
(L in centimeters)
Classical Wave
@D Equal probability of Probability 1s function of X and
finding particle anywhere varies with E
(for any E) = 1/L
@ Continuous E > 0 allowed Discrete E, allowed

3 As n — oo, wave picture reduces to classical picture.
“correspondence principle”



[Linear harmonic oscillator

:Consists of a particle moving under a restoring
force proportional to the displacement.

F=-—gx
1
V=—dex=§gx2
htd*yp 1
— — —— —_— 2 —_— p—
2m dx? T (2 gx* = E)p =0
- solution :

yx? mg

Y(x) = f(e” 2 wheny? =—=
f (x) : polynomial that terminate after a finite number
of terms to keep Y (x) finite and normalizable
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[Linear harmonic oscillator

From termination condition :

Potential energy

E,=Mm+3)hw w =21 |— zkx? b Transition
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Internuclear separation X

* Applications

(D Vibration of atoms in a crystal can be represented by
a collection of oscillators representing lattice waves.
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[Linear harmonic oscillator

@ Collection of charge oscillators generates electromagnetic

radiation — photon 7@ ..
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[Linear harmonic oscillator

* Classically, mid point has lowest probability, side point has
largest probability.
— not the case 1n quantized oscillator.

-For large n [Linear harmonic oscillator]

|2
Max. probability at the classical

“turn around” points, at the
“ends” of the oscillation.
-b 0 b
Position

[Particle in a box]

|2
Constant probability




