
Chapter 5. Matter Waves



Matter waves
• We were able to derive the wave equations for waves in a 

string or for electromagnetic waves from a knowledge of the 
medium in which the waves propagate.

• We construct a formal equation that will meet very general 
requirements that matter often exhibits wave-like properties, 
such as electron diffraction.

• How can we construct the wave equation for matter waves?



Matter waves
• The desired solution may have the form like

• The features the matter wave equation should include are the energy E
and the momentum p, which are common between the “particle” and the 
“wave”.

• If we assume that the matter wave equation has the harmonic solutions as 
the above, then
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Schrödinger time dependent wave equation

• Since the energy of a particle is given by

• The above equation is the Schrödinger time-dependent wave 
equation.

• The equation must be used if we want to describe processes 
related to dynamic transition, such as in optical absorption 
and carrier relaxation.
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Schrödinger time-independent wave equation

• If we are not concerned with the dynamic changes of energy state, but 
concerned with the question of what energy states are allowed in the 
presence of a particular potential energy V(x, y, z), so called stationary 
states of the system, the states can be expressed as

• Substitution of the equation (5) into (4) leads to
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Schrödinger time-independent wave equation

• Procedure for solving the wave equation

1. Obtain the general solution 𝜓ሺ𝑥ሻ for the particular V of 
interest.

2. Retain only mathematically well behaved solution, i.e.

3. Apply boundary conditions.
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
• What is ሺ𝑥ሻ?
• Physical significance of ሺ𝑥ሻ can be associated at least with 

the real quantity       .
• Suppose that a plot of                   vs x representing a 

“particle” has the dependence on x shown in the below figure.
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
• Two interpretations of
① The probability of finding the particle between x and x+dx

or within dxdydz of (x, y, z).
<“Where is the particle likely to be”>

② Represent the density function for the “particle”
 e.g.,          represents a spatial distribution of charge 

corresponding to a single electron.
 collapse to a specific location during measurement with 

a probability ∝ density function
 The probability of measuring a  particular point is 

proportional to the magnitude of the density function        
at that point.

<Particle does not have a position>
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
• Since in either interpretation,         is a probability, it must be 

“square integrable”.

• When the wave function is multiplied by an appropriate constant 
A such that

• The wave function is said to be normalized, and A is called the 
normalization constant.

• A normalized wave function satisfies  
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
• To be used as a probability, the wave function must be normalized.

• In spherical coordinates

• Three important systems allow exact solutions.

① A free electron model of a confined electron

② Linear harmonic oscillator (F=-gx)
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Free electron model of a confined electron

• The Schrödinger equation becomes

• The solution of the above equation 
has the form.

• Substitution eq. 12 into eq. 11 
results in
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Free electron model of a confined electron

• B.C’s
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Free electron model of a confined electron

 Number of nodes in 
 More nodes correspond to the higher energy.
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Free electron model of a confined electron

 For large n
2

n

Classical
① Equal probability of 

finding particle anywhere 
(for any E) = 1/L

② Continuous E ൒ 0 allowed

Wave
Probability is function of x and 
varies with E

Discrete En allowed

③ As               wave picture reduces to classical picture.
“correspondence principle” 
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Linear harmonic oscillator

- solution :
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:Consists of a particle moving under a restoring 
force proportional to the displacement.



From termination condition : 

• Applications
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Linear harmonic oscillator

① Vibration of atoms in a crystal can be represented by 
a collection of oscillators representing lattice waves. 
→



② Collection of charge oscillators generates electromagnetic
radiation →

Linear harmonic oscillator
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• Classically, mid point has lowest probability, side point has 
largest probability.
→ not the case in quantized oscillator.

-For large n

Linear harmonic oscillator
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Max. probability at the classical 
“turn around” points, at the 
“ends” of the oscillation.

Constant probability

[Particle in a box]

[Linear harmonic oscillator]


