Phonon Statistics

* Crystal vibrations: There are two kinds of “quantization”;

— The limitation of the allowed frequencies in a finite crystal to the
normal modes by the boundary conditions. (classical atoms and
classical waves;, only specific wavelengths, mA=2L, and their
corresponding frequencies, w,,, are allowed)

— The limitation of the allowed energies in one of specific mode of an
oscillator. (quantum mechanical; we consider the individual atoms
are now ‘“particles” with wave-like properties. The energy in a
vibration with a particular allowed mode (state), n, must be of the

form 1
En = (TL + E)ha)

— Both limitations must be satisfied by the vibration in a crystal, i.e.,

Epnn=m+ %)ha)m
:The energy corresponding to the nth state of the mth mode.



Phonon statics

* What 1s the average number of phonons with frequency w,,
at temperature T?
(N possible modes — w,, 1s a particular mode)

E,.n, = nhw,, :Energy corresponding to nth state of mth mode, i.c.,
the state with n phonons, each with energy of 7w

(1) P, = probability of exciting the state with £ in the crystal at temperature T
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Phonon statics
(2) average energy of the mth mode
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(3) average number of phonon with ®_,
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Mm = 7, [Bose — Einstein distribution]

ekT —1 : Applicable to both phonons and photons



Phonon statics

<N(E)>

: 1
J Bose-Emnstemn ZFr 7 If hw > kT, the Bose-
o} Einstein distribution
reduces to the simple

o3 Boltzman e—lf—T Boltzmann distribution.
0.0t E

hw - hw

If —<<1 (largeT), E,,—Ey= = kT
KT hw

1 1
EkT : kinetic energy, EkT : potential energy

Total energy (there are 3N total number of modes in three dimensions)

3N
= 2 E. = 3NkT
n=1



The Hydrogen atom

* A single electron bound to a single proton by a Coulomb
attractive force.

* An understanding of the solution for the hydrogen atom
allow at least a qualitative understanding of elementary
atomic structure.
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The Hydrogen atom

* The Schrédinger equation for the hydrogen atom 1s

Vi + ( ){E V(r)iy =0
where the potent1al energy V(r)1s Coulomb attraction

between postive proton and negative electron.

2
q :central force field (only a function of distance from the
dtegr  center of force and independent of the particular direction)

V(r) =—

* For spherical coordinates,

16 ) N 1 6 05 N 1 62¢+2m q* B =0
r2er| 51”1/) r2sin 8 66 sin 50 v r2sinf d¢p? h? \4meyr V=

* Solutions by seeking a separation of the variables

Y(r,0,¢) = R(r)0(0)P(¢)



The Hydrogen atom

* The resulting differential equations for each of the variables are

1azc1>_

P 92

1 d do
sin 6 dé (Sm 0 dG) T ( sin? 6) 0=0 (A & B are constants)

d2R+2dR+ Zm{E Vi) B R =0
dr? rdr h (r) r2 B

* Angular parts [the equations for ®(¢) & O(0)] are independent of V(1)

and are the same for all central force-field systems.
: expressible 1n “spherical harmonics™ and do not affect the allowed
energies for the free hydrogen atom.

* Quantization is expected because an electron is confined physically. But,

there are no geometric boundary conditions.

* However, the requirement is that the wave function should be
mathematically well behaved.

* There are three quantum numbers because there are three kinds of
variables.



The solutions of ®(¢), G(0)
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— In order for ®(¢) to be single valued, O(¢+27)= O(¢)
1
= A2 =, m =0, +1, +2

m, :the magnetic quantum number

E 1n a free hydrogen atom does not depend on m, unless magnetic field is present.
(Zeeman effect)

. O(0)
—  ©(0) involves polynomials in sin 6 and cos 0.

— For ©(0) to be finite, a polynomial must be terminated after a finite number of terms.

—  The termination condition introduces another quantum number ¢ such that
B=(({+1) (=0,1,2, -

|m1| </
{ . angular momentum quantum number

— The total angular momentum for a given state of the hydrogen is

{00 +1))?



The solutions of ®(¢), G(0)

* ©(9)
d""l(cos? 1)

®(9) = Bml (COS 9) = %(1 — cos’ (9)|m1|/2

d(cos 0)"™
[associated Legendre functions]
Spectroscopic my
designation | ™ R (cost) ©(¢)
S 0 0 1 1
P 1 0 coso 1
p 1 +1 sin® exp(xid)
d 2 0 (3cos?0-1)/2 1
d 2 +1 3sinBcoso exp(Lid)
d 2 +2 3sin%0 exp(+i20)




The solution for R(7)

* For R(r), the differential equation becomes

d’R 2dR 2m q> £(£+ 1)
—+—+—(E+ — —=tR=0
dmreyr T

* The solution of the above equation can once again be written
in the form of a polynomial that must be terminated after a
finite number of terms in order for R(7) to be finite and well

behaved.

* The termination conditions introduce the third quantum
number, n, so called the principal quantum number, because
the energy depends only on the value of n in the hydrogen
atom.



The solution for R(7)

* The radial wave functions have the form

ng(r) =—pP exp( Ily) a 2£+1{ xp(p) dpn (pnMeP)}

\ )

Laguerre polynomials
f <(n—-1) n=12--
p = 2r/na,
ap, = 4megh?/mq? : Bohr radius - the radius of the circular
orbit of the lowest energy state (ground
state)

* Combine the various portions of the wave functions:
¢n,€,m,ms — Rn,ﬁ (r)®£,mg (Q)q)mﬁ (¢)



Energy of the hydrogen atom

* Allowed energies in the hydrogen atom
maq* 1
 32m2e,2h2 ‘n?

E, =

— m is the reduced mass of the hydrogen atom, which is defined
as m,, -m, [(m, +m,). Since m, > m,, the reduced mass of the
hydrogen atom reduces to m,. The difference between the reduced
mass and the electron mass is 0.05%

— Ground state of the hydrogen atom corresponds to an energy
of E, =-13.5¢€V, called 1 Rydberg.

— When an electron in energy state £, undergoes a transition to the
ground state, the energy difference (£, — E,) 1s emitted as a photon.

at, =6, £)=| 28 | 1-( %)

“Lyman series” of optical emission lines for hydrogen atm
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Energy of the hydrogen atom

Electron transitions for the Hydrogen atom

Yy
Brackett series
E(n) to E(n=4)
YYYY
Paschen series
E(n) to E(n=3)
YYYY
Balmer series
E(n) to E(n=2)

Lyman series
E(n) to E(n=1)

Visible Spectrum

Hydrogen Absorption Spectrum

.

Hydrogen Emission Spectrum



Electron Spin

* In addition to the orbital angular momentum described by £,
the electron also has a kind of intrinsic angular momentum
called “electron spin”.

* The treatment of the spin angular momentum is closely
analogous to the treatment of orbital angular momentum.

The spin angular momentum vector S
S| =S =s(s+1)h s: spin quantum number

* The z(arbitrary) component of the spin angular momentum
S, =mgh mg:spin quantum number

+1 '
%.spmup

——:spind
> spin down



Orbaital of hydrogen atom

* Allowed energies depend only on n
mq* 1
32mey? hz) n?

Enz_(

* Example

@D Is: n=1,£=0,m,=0
®(0) and O(¢) are constants. — Spherical symmetry state

Z

~

Two spin quantum numbers (m,)
— two s states with the same energy



Orbaital of hydrogen atom

2 p state:
n=2,{=1,m,=-1,0,+1, mg ==

— p states have 3 orbital states.
— Due to spin, p states have 6 possible states.
— All the states have the same energy in hydrogen atom.

— When the states with different spatial distributions (set
of quantum numbers) have the same energy, it 1s said to
as “degenerate”.

— Wave functions for the degenerate states:

N | =

Yni+1 = Ry (r) sin@ el Angular distribution of the p state,

Yn,i0 = Rpi(r) cos 6 _ |1/)n,l,ms|2, 1s symmetry about the z
Yni-1 = Rpi(r) sinfe e axis. (Lobes of probability density)



Distribution of wave functions
(Probability density)
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Pauli Exclusion Principle

* “No two electrons in the same system can have all the
quantum numbers the same, n, £, my, m,.”

* “The wave function for any system of electrons must be anti-
symmetric with respect to the interchange of any two
electrons.

m, 2 for =0 (s)
m,: 3 for ‘=1 (p)
m,: 5 for (=2 (d)
m,: 7 for (=3 (1)

. s has two states, p:6 states, d : 10 states, f : 14 states



Pauli Exclusion Principle
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