
Phonon Statistics
• Crystal vibrations: There are two kinds of “quantization”;

 The limitation of the allowed frequencies in a finite crystal to the 
normal modes by the boundary conditions. (classical atoms and 
classical waves;, only specific wavelengths, m2L, and their 
corresponding frequencies, m, are allowed)

 The limitation of the allowed energies in one of specific mode of an 
oscillator. (quantum mechanical; we consider the individual atoms 
are now “particles” with wave-like properties. The energy in a 
vibration with a particular allowed mode (state), n,  must be of the 
form 

 Both limitations must be satisfied by the vibration in a crystal, i.e.,
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:The energy corresponding to the nth state of the mth mode. 



Phonon statics
• What is the average number of phonons with frequency ωm

at temperature T? 
(N possible modes – ωm is a particular mode)
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(1) 𝑃𝑚𝑛 = probability of exciting the state with 𝐸𝑚𝑛 in the crystal at temperature T



Phonon statics
(2) average energy of the mth mode

(3) average number of phonon with ωm
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    ሾBose െ Einstein distributionሿ
: Applicable to both phonons and photons



Phonon statics
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If  ℏ𝜔 ≫ kT, the Bose-
Einstein distribution 
reduces to the simple 
Boltzmann distribution. 
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Total energy (there are 3N total number of modes in three dimensions)
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The Hydrogen atom
• A single electron bound to a single proton by a Coulomb 

attractive force.
• An understanding of the solution for the hydrogen atom 

allow at least a qualitative understanding of elementary 
atomic structure.
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The Hydrogen atom
• The Schrödinger equation for the hydrogen atom is

where the potential energy        is Coulomb attraction
between postive proton and negative electron.

• For spherical coordinates,

• Solutions by seeking a separation of the variables
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The Hydrogen atom
• The resulting differential equations for each of the variables are

• Angular parts [the equations for () & (θ)] are independent of  V(r) 
and are the same for all central force-field systems.
: expressible in “spherical harmonics” and do not affect the allowed 
energies for the free hydrogen atom.

• Quantization is expected because an electron is confined physically. But, 
there are no geometric boundary conditions.

• However, the requirement is that the wave function should be 
mathematically well behaved.

• There are three quantum numbers because there are three kinds of 
variables. 
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The solutions of Φ(ϕ), Θ(θ)
• Φ(ϕ)

 In order for Φ(ϕ) to be single valued, Φ(ϕ+2π)= Φ(ϕ)

E in a free hydrogen atom does not depend on ml unless magnetic field is present.
(Zeeman effect)

• Θ(θ) 
 Θ(θ) involves polynomials in sin θ and cos θ.
 For Θ(θ) to be finite, a polynomial must be terminated after a finite number of terms.
 The termination condition introduces another quantum number ℓ such that

 The total angular momentum for a given state of the hydrogen is
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The solutions of Φ(ϕ), Θ(θ)
• Θ(θ)
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The solution for R(r)
• For R(r), the differential equation becomes

• The solution of the above equation can once again be written 
in the form of a polynomial that must be terminated after a 
finite number of terms in order for R(r) to be finite and well 
behaved.

• The termination conditions introduce the third quantum 
number, n, so called the principal quantum number, because 
the energy depends only on the value of n in the hydrogen 
atom.
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The solution for R(r)
• The radial wave functions have the form

• Combine the various portions of the wave functions:
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: Bohr radius - the radius of the circular 
orbit of the lowest energy state (ground 
state)
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Energy of the hydrogen atom
• Allowed energies in the hydrogen atom

 m is the reduced mass of the hydrogen atom, which is defined  
as                                 . Since                ,  the reduced mass of the 
hydrogen atom reduces to     . The difference between the reduced 
mass and the electron mass is 0.05%

 Ground state  of the hydrogen atom corresponds to an energy 
of                       , called 1 Rydberg.

 When an electron in energy state      undergoes a transition to the 
ground state, the energy difference                is emitted as a photon.
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Energy of the hydrogen atom



Electron Spin
• In addition to the orbital angular momentum described by ℓ, 

the electron also has a kind of intrinsic angular momentum 
called “electron spin”.

• The treatment of the spin angular momentum is closely 
analogous to the treatment of orbital angular momentum.

• The z(arbitrary) component of the spin angular momentum

The spin angular momentum vector 𝑆
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Orbital of hydrogen atom
• Allowed energies depend only on n

• Example

① 1s: n = 1, ℓ = 0, 𝑚ℓ = 0
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Θ(θ) and Φ(ϕ) are constants. → Spherical symmetry state

Two spin quantum numbers (ms) 
→ two s states with the same energy



Orbital of hydrogen atom
② p state: 

n = 2, ℓ = 1, 𝑚ℓ = -1, 0, +1, 𝑚௦ = േ ଵ
ଶ

 p states have 3 orbital states.
 Due to spin, p states have 6 possible states.
 All the states have the same energy in hydrogen atom.
 When the states with different spatial distributions (set 

of quantum numbers) have the same energy, it is said to 
as “degenerate”.

 Wave functions for the degenerate states:
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Angular distribution of the p state, 
𝜓௡,௟,௠ೞ

ଶ
, is symmetry about the z 

axis. (Lobes of probability density)



Distribution of wave functions 
(Probability density)



Pauli Exclusion Principle
• “No two electrons in the same system can have all the 

quantum numbers the same, n, ℓ, 𝑚௦, 𝑚௘.”
• “The wave function for any system of electrons must be anti-

symmetric with respect to the interchange of any two 
electrons.
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Pauli Exclusion Principle
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