
Precision Design: Thermal Design 

Thermal design: 

Thermal deformation error is one of the largest error sources 

in machine structures, and it is due to the temperature change 

of machine element; heat sources, heat flow mechanism, 

thermal deformation, thus thermal design strategy is the key 

issue. 

 

Basic Material Properties (Slocum’s precision machine design) 

(Source: Dornfeld’s precision manufacturing) 

 



Heat sources:  

Motors, Control electronics, Bearings, Transmission, Hydraulic 

oil, Gears/Clutch, Pumps and Engine, Guideways, process, 

chips, coolant system, lubricating systems, 

external/environmental heats, operator (human) 

 

Power Losses as Heat sources 

1) Power losses in Belt transmission 

Belt transmission with V-belts is one of high power losses 

arising from belt slip. Belt transmission with cog-belts is high 

efficient and stiff, in use for machine tool’s steerable axes. 

Power losses ΔN=(1-η)N [W] 

N=input power 

η =exp(-0.55/M) for transmitted torque M<25Nm 

=0.978 for M>25Nm 

2) Power losses in Ball Screw 

The limiting friction moment, considering the return motion of 

the rolling elements and tension on rolling elements; 

MB=FPnη/2π [Nm] 



Where F=rolling elements’ tension force[N] 

Pn=Guiding length [m] 

η=Ideal efficiency of system 

Then, Power loss=ωMB [W] 

3) Power losses in Slide and Rolling guide joints 

ΔN=μPV [W] 

μ= Guide’s friction coefficient 

=0.1 - 0.07 for steel/steel sliding pairs, under lubrication 

=0.15-0.18 for steel/steel under other condition 

=0.05-0.18 for steel/cast-iron, under lubrication 

=0.15-0.19 for steel/cast-iron under other condition 

4) power losses in rolling guides 

Power losses in rolling elements in linear guide carriages 

=μPwV ; where μ=friction coefficient from 0.001-0.01 

Pw=resultant load[N], P0=preload[N], fw=Load factor, 

Pn=changing load[N], k=0.5-0.65 

Pw=P0+kfwPn 

when fwPn/P0≤2.83 



Pw=fwPn 

when fwPn/P0>2.83 

(by THK and Mekid) 

5) Power losses in motors driving machine spindles 

Qmotor=ωM(1-ηmot) 

Qmotor:heat generated by motor, 

M:motor’s torque 

ηmot:motor’s efficiency 

6) Power losses in rolling bearings of spindle 

Power loss=ωM 

M=total friction moment=M0+M1 

M0=friction moment in the lubricating film 

M1=friction moment due to loading 

=f1FD [Nmm] 

where f1=friction coefficient 

F=Load to bearing 

D=motor diameter 

 



q 

Heat transfer paths: 

①Conduction(ambient or vacuum) 

: Energy transfer from the high temperature region to low 

temperature region, when there exists temperature gradient in 

a body. 

q=KA∙∂T/∂x [W] 

K=thermal conductivity [W/m˚C], A=Cross sectional area[m2] 

            

          A     qx      qx=KA∂T/∂x 

   0         x     L    ∂T/∂x=ΔT/Δx≒(TL-T0)/L 

Thermal-conductivity, K[W/m°C]  

Copper 385, Al 202, Iron 73, Steel 43, Marble 2.5,  

Glass 0.78, Water 0.556, Air 0.024 

 

Conduction is a very fundamental heat transfer mechanism, 

and the convection is a particular case of conduction. 

 

 



②Convection(ambient) 

:Heat transfer at the wall of temperature change 

q=hA(Tw-T∞), where h=convection coefficient  

Tw and T∞ are temp. at the wall and free stream 

Convection coefficient for modes, [W/m2K] 

4.5 for free convection  

12 for forced convection of 2m/s flow 

75 for forced convection of 35m/s flow 

               T∞ 

         q     T    A=exposed area to environment 

 

 ∴ q=hA(T-T∞)=hAΔT 

 

③Radiation(ambient and vacuum) 

:electro-magnetic radiation due to temperature difference 

q=FeFGσA(T1
4-T2

4); 

Fe=Emissivity, FG=View factor 

σ=Stefan-Boltzmann Constant=5.669E-8 [W/m2K4] 



For T1>T2 

                      q 

          T1                    T2 

 

Ex) Radiation between body 1 and enclosing body 2  

              A2 ρ2 ε2 T2 

 

 

               

 

 

 

When body1 is enclosed by body2  

the heat transfer between 1 and 2 is; 

q12/A1=Hr(T1-T2) 

Hr=σ(T1
2+T2

2)(T1+T2)/[1+(ρ1/ε1)+[(A1/A2)(ρ2/ε2)]] 

where A1,A2: surface Area; ρ1, ρ2: reflectivity; ε1, ε2:emissivity 

 

 

A1 ρ1 ε1 T1 



Various Temperature fields in machine elements: 

(1) Uniform temperature field other than 20°C, or 68°F 

; ∂/∂x≒∂/∂y≒∂/∂z≒0 

(2) Non-uniform temperature gradient field (static effects) 

; ∂/∂x≠0, ∂/∂y≠0, ∂/∂z≠0; but ∂/∂t≒0,  

(3) Dynamic temperature variation field (dynamic effects) 

; ∂/∂t≠0 

Temperature field and thermal deformation 

Under free constraints of structure;  

Temperature field, T(x,y,z) generates the thermal strain field  

(εx,εy,εz), and 

εx=αxT(x,y,z) 

εy=αyT(x,y,z) 

εz=αzT(x,y,z) 

where αx, αy, αz are the thermal expansion coefficients in 

respective axis 

 

                   T(x,y,z) 
(εx,εy,εz) 

@T(x,y,z) 



Thermal expansion coefficients (unit: ppm/K) 

Al   23.03  Fe  12.3  Ti 8.35 

Cu  16.5  Ni  13.3  Zn 25  

Sn  21.2  Co  13.3  Cr 6.2 

Ag  19.2   Au  14.15  Pt 9 

Quartz 0.55  Glass  3.78   SiC 4.4  

Carbon 0.7~6  Al2O3  8   SiO2 8.8  

SUS304 17.3  SUS316 16     Granite 6.0 

Thermal deformation under (1)Temperature gradient, 

(2)Constant temperature change, (3)Dynamic temperature 

changes are of interest. 

1. Temperature gradient 

1) Temperature gradient in longitudinal direction 

    T2(>T1)           T(x)=T1+X(T2-T1)/L 

                             L            =T1+XΔT/L  ∴T(x)-T1=XΔT/L 

                                         Thermal strain at x, ε(x)=αT=αXΔT/L 

                             X           Thermal elongation, ΔL 

                             0           ΔL=∫0
Lε(x)dx=αΔTL/2= αLΔT/2 

                T1 

 



Ex)1m steel structure of 1˚C temperature change, α=12ppm/˚C 

   ∴ ΔL=αΔTL/2=6[um] 

When the structure is constrained at two ends, the induced 

compressive load becomes, when cross sectional area A=1cm2 

∴ P=AEεT=AEαΔT/2 =10-4(200)109(12)10-6(0.5)=120[N] 

 

2)Temperature gradient in the transverse direction 

             T2(>T1) 

                                      T(y)=T1+y(T2-T1)/h 

h                                y       =T1+yΔT/h 

               T1                            0     

   0    x 

Thermal strain at y, ε(y)=αyΔT/h=Bending strain=y/ρ 

Bending curvature due to temperature change, 1/ρ=αΔT/h 

This structure bends, and the bending angle, θ(x), and 

deflection, δ(x), can be obtained from the curvature. 

Bending angle θ(x) 

θ(x)=∫1/ρdx=∫0
xαΔT/hdx=αxΔT/h 

 



∴Bending angle between two ends 

=θ(L)-θ(0)=αLΔT/h=L/ρ [urad] 

This bending angle frequently contributes to the Abbe offset, 

making large amplification. 

Ex) Steel beam of L=1m, h=0.1m, under transverse temp 

change 0.1˚C; 

Bending angle=12(1)(0.1)/0.1=12 [urad] 

=2.5 [arcsec] (∴Big number!!) 

 

Bending deflection δ(x) 

δ(x)=∫θ(x)dx=∫o
x αxΔT/hdx=αx2ΔT/2h 

Bending deflection between two ends=δ(L)-δ(0)=αL2ΔT/h 

The straightness error due to the bending is 

Straightness error=|δ(0)-δ(L/2)|=αL2ΔT/8h=L2/8ρ 

Ex)For the above case, the straightness error induced= 

12(1)2(0.1)/0.8=1.5[um] (∴Big number!!) 

 

 



When the structure is constrained at two ends by clamping 

the induced bending moment, M, is 

M=EI/ρ=EIαΔT/h,  

and maximum bending stress=EαΔT/2 

=200E9(12E-6)(0.1)/2=200(12)(1000)/2=120[KPa]  

 

3) General case:  

It is the combination the longitudinal temperature gradient 

and the transverse gradient, thus both cases are summed for 

the general case. 

Ex) C frame Aluminum structure with L=200mm, h=20mm, 

C=75mm, α=23ppm/˚C. The temperature difference is 2˚C 

between left and right , and 2˚C between bottom and top. 

                  A 

                                y 

   L                                 x 

 

                  O  h 

            C 

 



Under the gradient ∂T/∂x 

Horizontal displacement of A w.r.t O =-δL-plate - δcolumn + δU-plate 

δcolumn=Lθ=LαΔTL/h=αΔTL2/h=23(2)(0.2)2/0.02=92[um] 

δL-plate= δU-plate =αΔTC/2=23(2)(0.075)/2=1.725[um] 

∴Horizontal displacement of A w.r.t O=-92 um; (Quite big!) 

For gradient ∂T/∂y 

Vertical displacement of A wrt O 

=δcolumn= αΔTL/2=(23)(2)(0.2)/2=4.6[um] 

For combining cases, 

 ∴ δx=-92 um, δy=4.6 um at A w.r.t O 

 

Therefore, in order to minimize the thermal deformation 

①Material selection of lower thermal expansion is preferred. 

②Symmetric design w.r.t the heat source is preferred 

  

 

 

 



2. Uniform Temperature Change in all direction 

 :Uniform thermal expansion for free constrained structure 

Structures consisting of different materials is of critical 

importance such as guideway elements with Steel on Granite 

that tightly bolted together. 

Under ΔT change; 

          α1,E1,I1                                                          w1 

h1                                   Steel 

h2                                   Granite 

          α2,E2,I2                                                          w2 

 

 

 

Free body diagram 

   M1                              M1=Ph1/2=E1I1/ρ 

 P                                     P 

    

   M2                              M2=Ph2/2=E2I2/ρ 

P                                      P 

 



M1+M2=Ph1/2+Ph2/2=E1I1/ρ+E2I2/ρ= (E1I1+E2I2)/ρ  

∴ 1/ρ=P(h1+h2)/2(E1I1+E2I2)   eq(1) 

From no slip at interface, 

ε1 at bottom= ε2 at top 

∴ α1ΔT-P/E1A1-(0.5)h1/ρ=α2ΔT+P/E2A2+(0.5)h2/ρ   eq(2) 

Eq(1),(2) give solutions for two unknowns; P and 1/ρ 

 

∴1/ρ=(α1-α2)ΔT/[(h1+h2)/2+2(1/E1A1+1/E2A2)(E1I1+E2I2)/(h1+h2)] 

and P=2(1/ρ)(E1I1+E2I2)/(h1+h2) 

Maximum straightness error experienced in the 

middle=L2/8ρ 

Bending angle due to temperature=L/ρ 

For practical calculation under ΔT=1˚C 

L=2[m] 

α1=12ppm/˚C, E1=200GPa=2.0E11, A1=h1w1=(0.01)(0.1)  

I1=(0.1)(0.01)3/12 

α2=6ppm/˚C, E2=20GPa=2.0E10, A2=h2w2=(0.3)(0.3)  

I2=(0.3)(0.01)3/12 



Therefore, bending curvature  

1/ρ=(α1-α2)ΔT/[(h1+h2)/2+2(1/E1A1+1/E2A2)(E1I1+E2I2)/(h1+h2)] 

=(6E-6)(1)/[0.5(0.01+0.3)+2[1/[(2E11)(0.001)]+1/[(2E10)(0.09)] 

=9.391E-6 

Straightness error =L2/8ρ=(9.391)4/8=4.695 [um]  

(This is quite big under just 1˚C change!) 

Bending angle= L/ρ=(9.691)(2)=18.782 [urad]=3.913 

[arcsec] 

1/ρ=P(h1+h2)/2(E1I1+E2I2) 

Compressive Load, P=2(E1I1+E2I2)/[(h1+h2)ρ] 

=2(0.0135E9)(9.391E-6)/0.301=842[N] 

Bending moment induced, M1+M2=(E1I1+E2I2)/ρ=130.5[Nm] 

 

Therefore materials with small difference in thermal expansion 

coeffcients are preferred in multi-layered structures, in order 

to minimize thermal deformation 

 

 

 



3. Dynamic temperature change 

1) Soak-out time 

When a machine element of initial temperature, T0, is 

exposed to environmental temperature of T∞, by 

convection to air, then the temperature of element, T(t), is 

obtained by the heat transfer equation. 

 

                      q 

                    T∞   T∞ 

                     A 

 

Where ρ=density, C=specific heat capacity, V=volume, 

A=exposed area to environment, h=convection coefficient 

-hA(T-T∞)=ρCV∂T/∂t  

∴T(t)=T∞+(T0-T∞)exp(-hAt/ρCV) 

= T∞+(T0-T∞)exp(-t/τ) 

∴ ΔT=(T0-T∞) exp(-t/τ) 

τ=ρCV/hA=time constant, and indicates the time required 

for reaching 37% of initial temperature change,  

T(t)         



τ for Fe=(7897)(0.465)=3672 (for per volume) 

τ for Al=(2707)(0.896)=2424 (for per volume) 

τ for Granite=(2640)(0.82)=2164 (per volume) 

  ΔT 

               Fe 

0.37 Granite     Al 

                     Time [sec] 

Design strategy with τ(=ρCV/hA) 

①Faster thermal equilibrium (with shorter τ) 

Granite>Al>Fe 

②Slower thermal equilibrium (with longer τ) 

Fe>Al>Granite 

 

 

 

 

 

 



2) Dynamic change in environmental temperature 

When machine element is under the dynamic change of 

environmental temperature, the temperature distribution 

inside the element is obtained as; 

 

 

Environment      Body      Area=A 

    qosinwt       T(x,t)        qx                   

            

              0           x 

Assume the environment inputs to the body, a sinusoidal 

heat transfer, qosinwt ; 

Energy conservation: 

q0sinwt - qx=ρCV∂T/∂t, and  

qx=kA∂T/∂x=transfer by conduction at x 

∴ q0sinwt - kA∂T/∂x = ρCV∂T/∂t    eq(1) 

Assuming T(x,t)=U(x)sin(wt+Φ), eq(1) becomes 

q0sinwt - kA∂U/∂xsin(wt+Φ)=wρCVU(x)cos(wt+Φ) 

When t=t0, let sin(wt0+Φ)=β, cos(wt0+Φ)=γ, the above 



equation is 

q0sinwt0 - βkA∂U/∂x=γwρCVU(x) 

∴U(x)+βKA/γwρCV ∂U/∂x=q0/γwρCV sinwt0 

Thus U(x)=T0 exp(-λx) 

and T(x,t)=T0 exp(-λx)sin(wt+Φ)=U(x)sin(wt+Φ) 

where λ= βKA/γwρCV and T0= q0/γwρCV sinwt0 

∴T(x,t) is also a sinusoidal function of t, where U(x) is the 

amplitude. 

 

 

Thermal diffusivity, D=K/ρC [m2/sec], the rate of a heat 

transfer in a material, and it can be interpreted as speed of 

transfer, i.e, speed of transfer area per second. 

 

Let us introduce the critical distance, Xc, which is the 

distance from the heat source in the material, where 36.7% 

of amplitude is observed during the period P of the 

sinusoidal heat source. 

 



 

                         Area=πXc2=Speed*Time=DP 

Xc                   

 

Area of transfer observing 36.7% amplitude=DP 

DP=πX2c  ∴ Xc=(DP/π)1/2 [m] 

U(Xc)/U(0)=exp(-λXc)=0.367=exp(-1) 

Thus λ=1/Xc  

and T(x,t)=T0 exp(-X/Xc)sin(wt+Φ)  eq(2) 

 

D, Thermal Diffusivity for Materials [unit: 10-4 m2/sec] 

Cu:1.1  Al:0.88 Fe:0.13  Granite:0.061 

Invar:0.30 Zerodour:0.0079 

 

Xc for Materials under P=1 day=24hr=86,400 sec [unit: m] 

Cu:1.74  Al:1.56 Fe:0.60 Granite:0.41 

Invar:0.91 Zerodour:0.15 

 



Under dynamic environmental temperature change, the 

dynamic response of material is: 

①Sinusoidal temperature change 

②Amplitude decreases with exp(-X/Xc), where Xc is the 

distance into the material such that 36.7% of initial 

amplitude is observed 

 

③Design principle and Xc 

Granite>Fe>Al is preferred for minimum effect of dynamic 

temperature change 

 

Xc                           Amp 

           Al                     1.0 

          Fe                            

        Granite                  0.37 

                1 day                   Xc 

             (Period, P)               (Dist. into Material) 

 

Therefore material selection of faster/longer thermal 

equilibrium for thermal soaking, and material selection of 



longer/shorter Xc for diffusivity are preferred. 

 

Thermal contact conductance across joints or contact surface 

 

        M1   M2 

F                F 

   q0            qx 

       0        x     F=Applied load at the contact area, A 

 

    T       

                     ∴ Temperature drop at contact area, A 

      0         x     ∴ ΔT=q/hs/A 

 

Thermal conduction is also sensitive to the contact pressure, 

surface roughness, hardness (or Young’s modulus), 

manufacturing processes.  

Thermal conductance across contact surface, hs [w/m2˚K], has 

been proposed by several models, and one of simpler forms 

in the elastic region is given by:  



[source AKJ Hasselstrom’s ‘Thermal contact conductance in bolted joints’] 

hs=1.55Ks ms P√2/(EeRsms)0.94 ; or 

hs=1.9Ks(P/Ee)0.94/Rs ; in much simpler form. 

where 1/Ks=0.5(1/K1+1/K2), and 

K1, K2 are the thermal conductivity of material 1, 2; [W/m˚C] 

P=Pressure applied between the surface  

=F/A  [Pa=N/m2] 

Ee=effective Young’s modulus of elasticity [Pa] 

1/Ee=1/[(1-ν1
2)/E1+(1-ν2

2)/E2] 

Rs=Mean roughness of surfaces of 1, 2 

=(R1
2+R2

2)1/2 in [m] 

where R1,R2=RMS roughness of surface 1, 2, respectively 

ms=Mean slope of surfaces 1, 2=(m1
2+m2

2)1/2 

where m1=RMS slope of surface 1 

=[∫0
L(dz1/dx)2dx/L]1/2 

m2= RMS slope of surfaces 2 

=[∫0
L(dz2/dx)2dx/L]1/2 

 



The above equation provides a very important knowledge on 

the thermal conductivity at the contact surface ; 

 

(1) Thermal conductance across contact surface, hs, is 

functioning similar to the convection coefficient 

(2) Higher Pressure(P) of contact gives higher hs 

(3) Lower Rs (finer surface) gives higher hs 

(4) Higher Ee (or harder material) gives lower hs 

 

Ex) Glass soaking in contact to Aluminum chuck 

1t Glass of 1m2, initially T0=50˚C 

Bottom side chucking to Aluminum of 15˚C 

with 0.5 bar pressure(50KPa) 

Top side: Free convection to 20˚C environment 

         T∞=20   qc 

Glass              qs 

Al Chuck        Tm=15 

 



Energy Conservation: 

ρVCdT/dt=-hA(T-T∞)-hsA(T-Tm)  eq(1) 

 

Top side h=4.5 W/m2/˚C for free convection 

Bottom side hs=1.9Ks(P/Ee)0.94/Rs 

P=0.5bar=50KPa=0.5E5[Pa] 

For Glass; Kg=0.78W/m/˚C, Eg=70GPa, νg=0.24 

For Al; Ka=7202 W/m/˚C, Ea=68GPa, νa=0.33 

1/Ks=0.5(1/Kg+1/Ka)=0.5(Kg+Ka)/(KgKa) 

≒0.5Ka/(KgKa)=0.5/Kg ∴Ks=Kg/0.5=2Kg=1.56[W/m/˚C] 

1/Es=1/[(1-νg
2)/Eg+(1-νa

2)/Ea]=1/[0.9424/Eg+0.8911/Ea] 

∴Es=EgEa/[0.9424Ea+0.8911Eg] 

=4760E18/[0.9424(68E9)+0.8911(70E9)] 

=37.64E9 [Pa]=37.64 [GPa] 

Glass; Rq1=0.01[um]=0.1E-7 [m] 

Al; Rq2=0.1[um] ∴Rs=(Rq1
2+Rq2

2)1/2 

≒(0.1)=0.1 [um]=1.0E-7 [m] 

 



∴hs=1.9Ks(P/Es)0.94/Rs=(1.9)(1.56)[0.5*E5/37.64E9]0.94/1.4E-7 

=88.6 [W/m2/˚C] ≫ h=4.5 

 

From eq(1) 

T(t)=Tm+(T0-Tm)exp(-t/τ) 

Where τ=ρVC/hsA 

=(2600)(1)(1)(0.001)(712)/[88.6(1)]=20.8 [sec] 

:Time, τ, for 36.7% decrease 

Therefore, the time constant, τ, can be shortened by increasing 

P (chucking pressure), or fining surface roughness of 

Aluminum chuck. 


