Diffusion in Substitutional Alloys

Binary substitutional diffusion

A-rich	B-rich

 D_A , D_B (intrinsic diffusion coefficient): diffusion relative to the lattice J_A , J_B : across a given lattice plane (moving)

$$J_A = -D_A \frac{\partial C_A}{\partial x}$$
, $J_B = -D_B \frac{\partial C_B}{\partial x}$

Total # of atoms/unit volume = C_0 (constant, independent of composition) Then, $C_a = C_A + C_B$

$$\frac{\partial C_A}{\partial x} = -\frac{\partial C_B}{\partial x} \qquad \qquad J_A = -D_A \frac{\partial C_A}{\partial x} , \quad J_B = +D_B \frac{\partial C_A}{\partial x}$$

$$J_A = -D_A \frac{\partial C_A}{\partial x}$$
, $J_B = +D_B \frac{\partial C_A}{\partial x}$

If
$$D_A > D_B$$
, then $J_A > J_B$

$$J_{v} = -J_{A} - J_{B}$$
$$= (D_{A} - D_{B})\frac{\partial C_{A}}{\partial x} \qquad \dots \dots (1)$$

variation in J_v across the diff. couple

Phase Transformation In Materials

$$\mathbf{v} = (\mathbf{D}_{\mathbf{A}} - D_{\mathbf{B}})\frac{\partial X_{\mathbf{A}}}{\partial x}$$

Practical question

- (1) Time for homogenization
- (2) Change in composition at a fixed position relative to the end of specimen
- Variation in J_v across the diffusion couple.

Total flux of A across a stationary plane with respect to specimen = a diffusing flux ($J_A = -D_A \frac{\partial C_A}{\partial x}$) w.r.t. lattice + flux due to lattice (vC_A)

Total flux of A across a stationary plane with respect to specimen = a diffusing flux ($J_A = -D_A \frac{\partial C_A}{\partial x}$) w.r.t. lattice + flux due to lattice (vC_A)

$$J_{A}' = -D_{A} \frac{\partial C_{A}}{\partial x} + vC_{A}$$

= $-D_{A} \frac{\partial C_{A}}{\partial x} + C_{A} (D_{A} - D_{B}) \frac{\partial X_{A}}{\partial x}$
= $-D_{A} \frac{\partial C_{A}}{\partial x} + (X_{A}D_{A} - X_{B}D_{B}) \frac{\partial C_{A}}{\partial x}$
= $-(X_{B}D_{A} - X_{A}D_{B}) \frac{\partial C_{A}}{\partial x}$

$$J_{A}' = -\widetilde{D}\frac{\partial C_{A}}{\partial x} , \qquad \widetilde{D} = (X_{B}D_{A} + X_{A}D_{B})$$

\rightarrow Interdiffusion coefficient

Phase Transformation In Materials

Likewise
$$J_B' = -\widetilde{D} \frac{\partial C_B}{\partial x} = \widetilde{D} \frac{\partial C_A}{\partial x}$$
 i.e. $J_{B'} = J_{A'}$

Using continuity equation,

$$\frac{\partial C_A}{\partial t} = -\frac{\partial J_A'}{\partial x}$$
$$\frac{\partial C_A}{\partial t} = \frac{\partial}{\partial x} (\tilde{D} \frac{\partial C_A}{\partial x})$$

Fick's 2nd law for substitutional alloy Darken's Eq

As long as the range of comp. is small

$$X_A D_B + X_B D_A \approx D_B$$
, $\widetilde{D} \neq f(comp.)$

to know D_A, D_B , need to know v (by marker) with known $v \& \widetilde{D} \Rightarrow D_A, D_B$ $\widetilde{D} = \widetilde{D}_0 \exp(-\frac{Q}{RT})$ likewise, $D_A = D_{A0} \exp(-\frac{Q_A}{RT})$

Phase Transformation In Materials

Kirkendall Effect

- D_{Zn}>D_{cu}
- Lower melting point materils (low atomic size) has higher D.
- 1. For a given crystal structure, $\tilde{D}(T_m)$ =const. in if B was added to A, results in lower T_{m2} than $\tilde{D}(T_{m2})$ (after B added) will be higher than before.
- 2. Open structure \rightarrow higher diff. Interstitial C in Fe $D_c^{\alpha} / D_c^{\gamma} \sim 100$ Sub. Self diff $D_{Fe}^{\alpha} / D_{Fe}^{\gamma} \sim 100$

Kirkendall void

180hr

Kirkendall voids
formed at the
interface between Cu
and solder.

Nano & Flexible Device Materials Lab.

Phase Transformation In Materials

300hr