No barrier for nucleation

Phase diagram with a miscibility gap

 $\Omega > 0$

- ✓ $\frac{d^2 G}{dX^2}$ < 0: chemical spinodal
- Small fluctuation in composition
 will produce A and B rich region
- Up-hill diffusion until the

equilibrium composition X_1 and X_2

nucleation and Growth

From Ch1

***** The Effect of ΔH_{mix} and T on ΔG_{mix}

Phase Transformation in Materials

 Composition profiles in an alloy quenched into the spinodal region

 Composition profiles in an alloy outside the spinodal points

Phase Transformation In Materials

Spinodal decomposion

Phase Transformation In Materials

- The Rate of Spinodal Transformation
- Rate controlled by interdiffusion coefficient \tilde{D}
- ✓ Within the spinodal $\tilde{D} < 0$
- ✓ Composition fluctuation $\propto \exp(-\frac{t}{\tau})$ $\tau = -\lambda^2 / 4\pi^2 D$
 - τ : characteristic time constant
 - λ : wavelength of the composition modulation (1-D assumed)
 - Transfer rate \uparrow as $\lambda\downarrow$
 - However, there is a minimum value of λ below which spinodal decomposition cannot occur
 - To calculate λ , it is need to take care of
 - 1) interfacial energy, and 2) coherency strain energy

✓ Homogeneous alloy X_o => decomposed $X_o + \Delta X$ and $X_o - \Delta X$

Total chemical free energy change

Interfacial energy (gradient energy)

- Initially small, but getting bigger
- Origin: Increase of unlike nearest neighbours
- K: propotional constant dependent on the difference in the bond energies

 $\frac{\text{Coherency strain energy}}{\Delta G_s \propto E\delta^2}$ $\delta = \left(\frac{da}{dX}\right) \left(\frac{\Delta X}{a}\right)$

$$\Delta G_{s} = \eta^{2} (\Delta X)^{2} E' V_{m}$$
where $\eta = \frac{1}{a} \left(\frac{da}{dX} \right)$

$$E' = \frac{E}{1 - \nu}$$
 (independent of λ)

 $\Delta G_C = \frac{1}{2} \frac{d^2 G}{dX^2} \left(\Delta X\right)^2$

$$\Delta G_{\gamma} = K \left(\frac{\Delta X}{\lambda}\right)^2$$

Total free energy change

$$\Delta G = \left\{ \frac{d^2 G}{dX^2} + \frac{2K}{\lambda^2} + 2\eta^2 E' V_m \right\} \frac{\left(\Delta X\right)^2}{2}$$

Condition for Spinodal decomposition

$$-\frac{d^2G}{dX^2} > \frac{2K}{\lambda^2} + 2\eta^2 E' V_m$$

The limit for the decomposition $(\lambda = infinite)$

$$\frac{d^2G}{dX^2} = -2\eta^2 E' V_m$$

Coherent Spinodal

$$\lambda^2 > -2K/(\frac{d^2G}{dX^2} + 2\eta^2 E'V_m)$$

for coherent Spinodal

The min. possible wavelength $\downarrow~$ with $\Delta T\uparrow~$ below the coherent spinodal

Nano & Flexible

Device Materials Lab.

Phase Transformation In Materials

- 1. Homogenous *a* stable
- 2. Homogenorus *a* metastable, only incoherent phases can nucleation
- 3. Homogenorus *a* metastable, coherent phase can nucleate
- 4. Homogenorus *a* unstable, no nucleation barrier, spinodal decomposion occur

5.5 Precipitation in Age-Hardening Alloys

5.5.6 Particle Coarsening

 $(\bar{r})^3 - r_0^3 = kt$

where $k \propto D\gamma X_e$

r_o : mean radius at time t=0

5.5 Precipitation in Age-Hardening Alloys

Meaning : distribution of small ppts coarsen most rapidly.

3.5 Interface Migraiton

Growth can be categorized into diffusion-controlled growth and interface-controlled growth

3.5 Interface Migration

- ✓ Phase transformation occurs by nucleation growth process.

Types of interfaces

- 1. Glissile: by \perp glide \rightarrow results in the shearing of parent lattice into the product (β), motion (glide) insensitive to temperature (athermal)
- 2. Non glissile (most of cases): migration by random jump of individual atoms across the interface (similar to high angle grain boundary migration)

3.5 Interface Migration

A. Heterogeneous Transformation

- Classifying nucleation and growth transformation (=heterogeneous transformation)
 - Transformation by the migration of a glissile interface
 - \rightarrow <u>Military transformation</u>
 - ✓ Uncoordinated transfer of atoms across non-glissile interface
 - \rightarrow <u>Civilian transformation</u>
- Military transformation
 - ✓ The nearest neighbors of any atom are unchanged.
 - The parent product phases the same composition, no diffusion involved (martensite transformation, mechanical twins)

