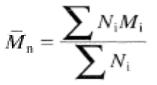
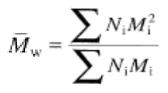
Chapter 11 – 14 Determination of Molar Mass and MM Distribution

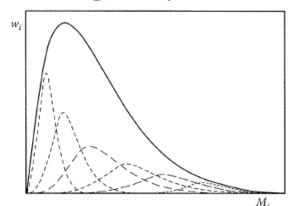
(Average) molar mass determination 11-15 sl 2

□ M_n Chapter 11


- colligative property measurement
 - osmotic pressure, vapor pressure, bp, fp
- end-group analysis


\square M_w Chapter 12

- □ light scattering
- sedimentation (by ultracentrifugation)


\square M_v Chapter 13

- □ (dilute solution) viscometry
 - volume \rightarrow mass ~ M_v is a relative MM.
- MMD [MWD] Chapter 14
 - □ fractionation and GPC
 - mass spectroscopy

Colligative property

property that depends only on the # of solute(not on the size or nature)

measuring gives M_n

 \square M_n = total weight / total #

□ the 4 CP's

as MM \uparrow , signal \downarrow

 $\overline{M}_{n} = \frac{\sum N_{i}M_{i}}{\sum N_{i}}$

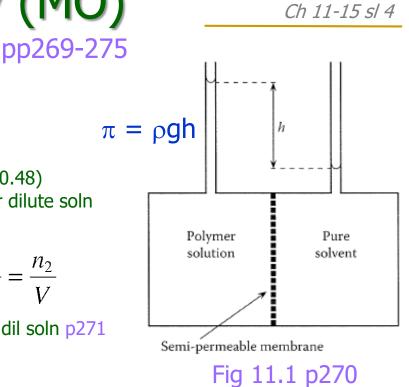
TABLE 11.1

The Relative Magnitudes of Colligative Effects for Polymers Dissolved in Benzene at a Concentration of 10 g dm⁻³

\bar{M}_{n} / g mol ⁻¹	Osmotic Pressure ^a / mm Benzene	Lowering of Vapour Pressure / mm Hg	Elevation of Boiling Point / ° C	Depression of Freezing Point / ° C
10,000	288	799×10^{-5}	272×10^{-5}	577×10^{-5}
100,000	29	80×10^{-5}	27×10^{-5}	58×10^{-5}
500,000	6	16×10^{-5}	5×10^{-5}	12×10^{-5}
1,000,000	3	8×10^{-5}	3×10^{-5}	6×10^{-5}

Note: The values are given in practical units and have been calculated assuming ideal solution behaviour. ^a At 25 $^{\circ}$ C. Ch 11-15 sl 3

Membrane osmometry (MO)


 \Box osmotic pressure π

$$\mu_{1} - \mu_{1}^{o} = -\pi \overline{V}_{1} \qquad \Delta \mathbf{C} \rightarrow \Delta \mu \rightarrow \pi$$

$$\mu_{1} - \mu_{1}^{o} = \frac{-\mathbf{R}T\phi_{2}}{x} + \mathbf{R}T\left(\chi - \frac{1}{2}\right)\phi_{2}^{2} \quad \text{Eqn (10.48)}$$

$$\mathbf{\pi} = \frac{\mathbf{R}T\phi_{2}}{x\overline{V_{1}}} + \frac{\mathbf{R}T\left(1/2 - \chi\right)\phi_{2}^{2}}{\overline{V_{1}}} \quad \longleftarrow \quad \frac{\phi_{2}}{x\overline{V_{1}}} = \frac{n_{2}}{V}$$

$$= \mathbf{R}T\left(\frac{n_{2}}{V}\right) + \mathbf{R}T\left(\frac{1}{2} - \chi\right)x^{2}V_{1}\left(\frac{n_{2}}{V}\right)^{2} \quad \text{for dil soln p271}$$

$$\Box \quad \overline{M}_{n} = \frac{\sum n_{i}M_{i}}{\sum n_{i}} = \frac{m}{n_{2}} \rightarrow \quad \frac{n_{2}}{V} = \left(\frac{m}{V}\right)\left(\frac{n_{2}}{m}\right) = \frac{c}{\overline{M}_{n}}$$

 \Box reduced osmotic pressure π/c

$$\frac{\boldsymbol{\pi}}{c} = \frac{\mathbf{R}T}{\overline{M}_{n}} + \left(\frac{\mathbf{R}T}{V_{1}}\right) \left(\frac{1}{2} - \chi\right) \left(\frac{xV_{1}}{\overline{M}_{n}}\right)^{2} c$$

Ch 11-15 sl 5

$$\square \quad \frac{\pi}{c} = \frac{\mathbf{R}T}{\overline{M}_{n}} + \left(\frac{\mathbf{R}T}{V_{1}}\right) \left(\frac{1}{2} - \chi\right) \left(\frac{xV_{1}}{\overline{M}_{n}}\right)^{2} c$$

□ at θ condition, $\chi = \frac{1}{2}$, ideal $\left(\frac{\pi}{c}\right)_{\theta} = \frac{\mathbf{R}T}{\overline{M}_{n}}$ □ as c → 0 also ideal $\left(\frac{\pi}{c}\right)_{c \to 0} = \frac{\mathbf{R}T}{\overline{M}_{n}}$

a virial equation

$$\frac{\pi}{c} = \mathbf{R}T\left[\frac{1}{\overline{M}_{n}} + A_{2}c + A_{3}c^{2} + \dots\right]$$

• $A_2 = 2nd$ virial coeff ~ non-ideality

MO experiment

- static or dynamic method
- for 5E4 < M_n < 1E6

• diffusion of solute; small signal (π)

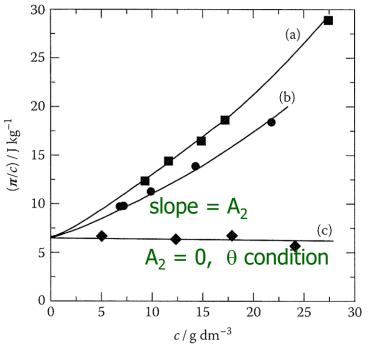
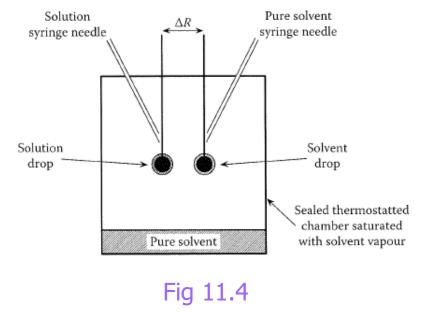


Fig 11.3

Vapor pressure osmometry (VPO)

Ch 11-15 sl 6

pp275-277


Iowering of solvent vapor pressure

$$\frac{1}{P} \left(\frac{\mathrm{d}P}{\mathrm{d}T} \right) = \frac{\Delta H_{\mathrm{v}}}{\mathbf{R}T^2}$$

$$\Delta T_{\mathrm{e}} = -\left(\frac{\mathbf{R}T_0^2}{\Delta H_{\mathrm{v}}} \right) \ln a_{1,T_0}$$

$$\frac{\Delta T_{\mathrm{ss}}}{c} = K_{\mathrm{ss}} \left[\frac{1}{\bar{M}_{\mathrm{n}}} + A_2^{\mathrm{vpo}}c + A_3^{\mathrm{vpo}}c^2 + \dots \right]$$

$$\frac{\Delta R_{\mathrm{ss}}}{c} = K_{R\mathrm{ss}} \left[\frac{1}{\bar{M}_{\mathrm{n}}} + A_2^{\mathrm{vpo}}c + A_3^{\mathrm{vpo}}c^2 + \dots \right]$$

□ for $M_n < 15000$

- \Box small signal (ΔR)
- complementary to MO

 $\Delta \mathbf{C} \rightarrow \Delta \mu \rightarrow \Delta \mathbf{P} \rightarrow \Delta \mathbf{H} \rightarrow \Delta \mathbf{T} \rightarrow \Delta \mathbf{R}$

Ebulliometry and cryoscopy

ebulliometry [bp elevation]

- $\Box \Delta T_{b}/c = K_{e} [(1/M_{n}) + A_{2}c + A_{3}c^{2} + ----]$
 - K_e calibrated with known MM

foaming

- cryoscopy [fp depression]
 - $\Box \Delta T_{f}/c = K_{c} [(1/M_{n}) + A_{2}c + A_{3}c^{2} + ----]$
 - K_c calibrated with known MM

supercooling

- Iimited by precision of temperature measurement
 - **useful only for** $M_n < 5000$
 - not used these days

Ch 11-15 sl 7

pp277-278

End-group analysis

Ch 11-15 sl 8

pp278-279

□ step polymers

HOOC-----COOH H₂N-----NH₂ HO-----OH

titration or spectroscopic methods

chain polymers

RMMMM----- (R = initiator fragment)

spectroscopic methods

accurate but limited

□ small conc'n of end-group

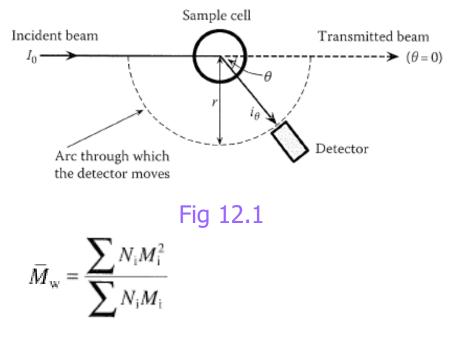
□ for $M_n < 15000$

Light scattering (LS)

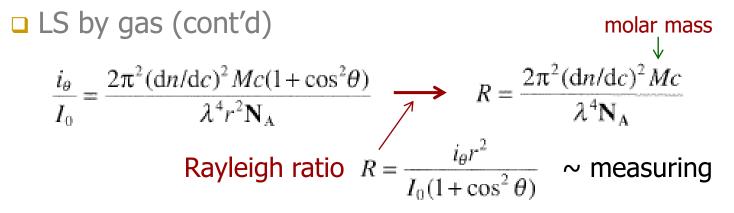
Ch 11-15 sl 9

light scattering

static LS ~ time-averaged intensity of light measured

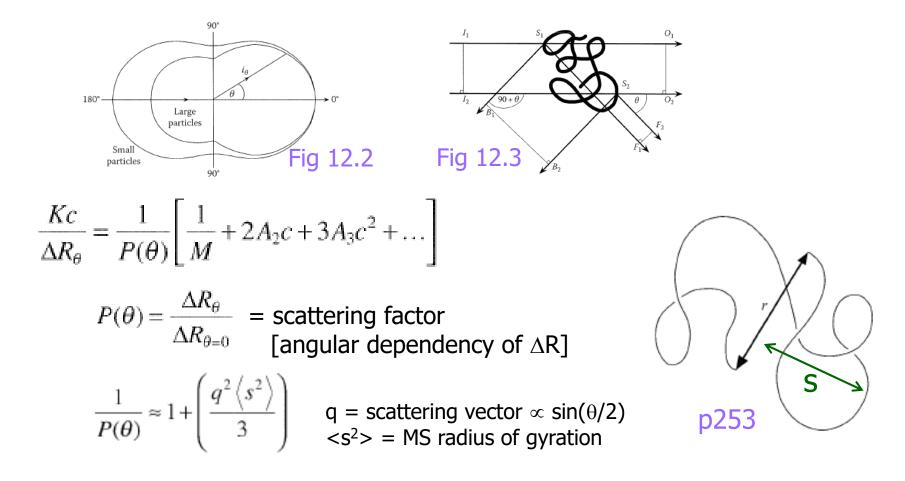

- elastic [Rayleigh] scattering ~ same freq ~ M_w
- inelastic [Raman] scattering ~ bond vibration energy
- $\hfill\square$ dynamic LS \sim movement of particle \sim Doppler effect
- LS by small gas molecule

$$\frac{I_{\theta}}{I_0} = \frac{8\pi^4 \alpha^2 (1 + \cos^2 \theta)}{\lambda^4 r^2}$$


Rayleigh Eqn

- $\alpha \sim \text{polarizability of molecule}$
- $\square \ \alpha^2$ gives M_w

• intensity ∞ [amplitude]² ∞ [mass]²

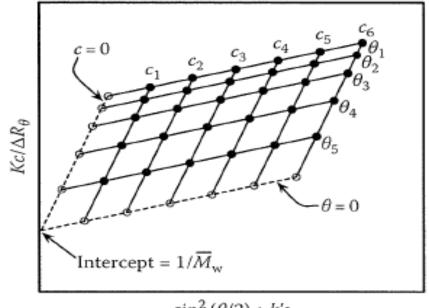


pp281-291

LS by (dilute) solution of small molecules

LS by sol'n of large molecules (D > λ/20 ≈ 20 nm) asymmetry + interference → angular dependence of i

□ LS by polymer sol'n (cont'd)


$$\frac{Kc}{\Delta R_{\theta}} = \left[\frac{1}{M} + 2A_2c + 3A_3c^2 + \dots\right] \left[1 + \left(\frac{16\pi^2 n_0^2 \sin^2(\theta/2)}{3\lambda^2}\right) \left\langle s^2 \right\rangle\right]$$

$$\Box \left(\frac{Kc}{\Delta R_{\theta}}\right)_{c \to 0} = \frac{1}{\bar{M}_{w}}$$

\Box for 2E4 < M_w < 5E6

- \Box small intensity (i_{θ})
- cancelling if too large
- □ sample must be dust-free

Fig 12.4 'Zimm plot'

 $\sin^2(\theta/2) + k'c$

SAXS and SANS

LS uses visible light

XS and NS

- \Box uses smaller λ
 - smaller scale structure
- \Box at small angle < 2°
 - to avoid angular dependence $P(\theta)$
- detector far from sample
 - to separate from $\theta = 0^{\circ}$
- high penetration depth
 - can be used for solid polymers
- □ SAXS for phase structure
 - morphology of blends, copolymers
- □ SANS for dimension of chain in bulk
 - with deuterated sample

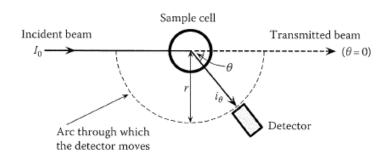

pp294-296

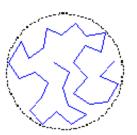
TABLE 12.1

Values of the Reciprocal Scattering Vector q^{-1} Calculated from Equation 12.23 for Some Typical λ , θ Combinations^a

Scattering Method	λ / nm	θ	<i>q</i> ⁻¹ / nm
SAXS	0.154	1.0°	1.4
	0.154	0.5°	2.8
	0.154	0.2°	7.0
SANS	1.0	1.0°	9.1
	1.0	0.5°	18.2
	1.0	0.2°	45.6
Light scattering	632.8	60.0°	67.1
	632.8	30.0°	129.7
	632.8	10.0°	385.2

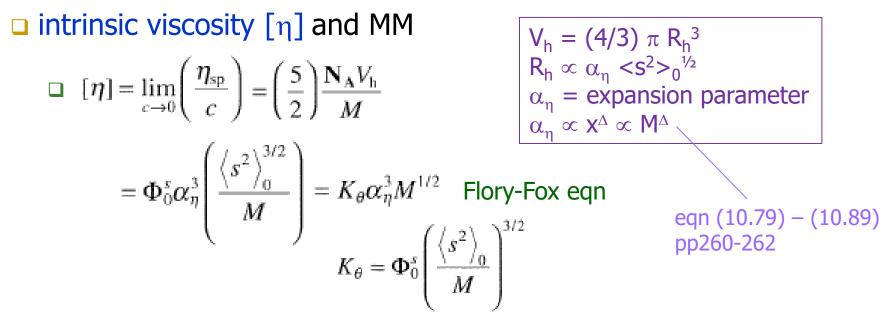
^a The refractive index n_0 of the medium is assumed arbitrarily to be 1.0 for SAXS and SANS, and 1.5 for light scattering.

Ch 11-15 sl 13


Dilute solution viscometry [DSV]

- polymer/solvent friction is
 - non-draining = moves together
 - (most) flexible chains
 - free-draining = solvent pass-trough
 - only when very short or rod-like

 $\hfill\square$ volume V_h and viscosity η


$$\square \quad \eta = \eta_0 \left[1 + \left(\frac{5}{2}\right) \phi_2 \right] \quad \text{Einstein eqn}$$
$$\phi_2 = \left(\frac{c}{M}\right) \mathbf{N}_A V_h \qquad \frac{[g/L]}{[g/mol]} [/mol][L]$$
$$\square \quad \eta_{sp} = (\eta - \eta_0) / \eta_0 = \left(\frac{5}{2}\right) \left(\frac{c}{M}\right) \mathbf{N}_A V_h$$

§10.4 pp262-264

 $\begin{array}{l} \eta_0 = \text{solvent viscosity} \\ \phi_2 = \text{vol fraction of solute} \\ c = \text{conc'n of polymer [g/L]} \\ M = \text{mol wt of polymer} \\ V_h = \text{hydrodynamic volume} \\ = \text{vol of equiv. sphere} \\ \eta_{sp} = \text{specific viscosity} \end{array}$

Ch 11-15 sl 14

 \Box [η] = KM^a Mark-Houwink-Sakurada [MHS] eqn a = 0.5 + 3 Δ

Common Name	Name Proposed by IUPAC ^a	Symbol and Definition ^b
Relative viscosity	Viscosity ratio	$\eta_{\rm r} = \eta/\eta_0$
Specific viscosity		$\eta_{\rm sp} = \eta_{\rm r} - 1$
Reduced viscosity	Viscosity number	$\eta_{\rm red} = \eta_{\rm sp}/c$
Inherent viscosity	Logarithmic viscosity number	$\eta_{\rm inh} = \{\ln(\eta_{\rm r})\}/c$
Intrinsic viscosity	Limiting viscosity number	$\left[\eta\right] = \lim_{c \to 0} (\eta_{\text{red}})$

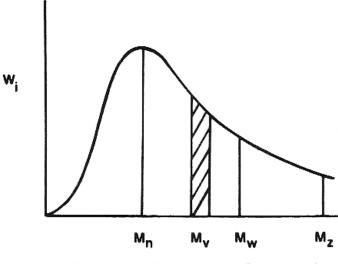
 \Box viscosity-average mol wt, M_v

$$[\eta] = KM^a \qquad [\eta] = K\overline{M}_v^a$$

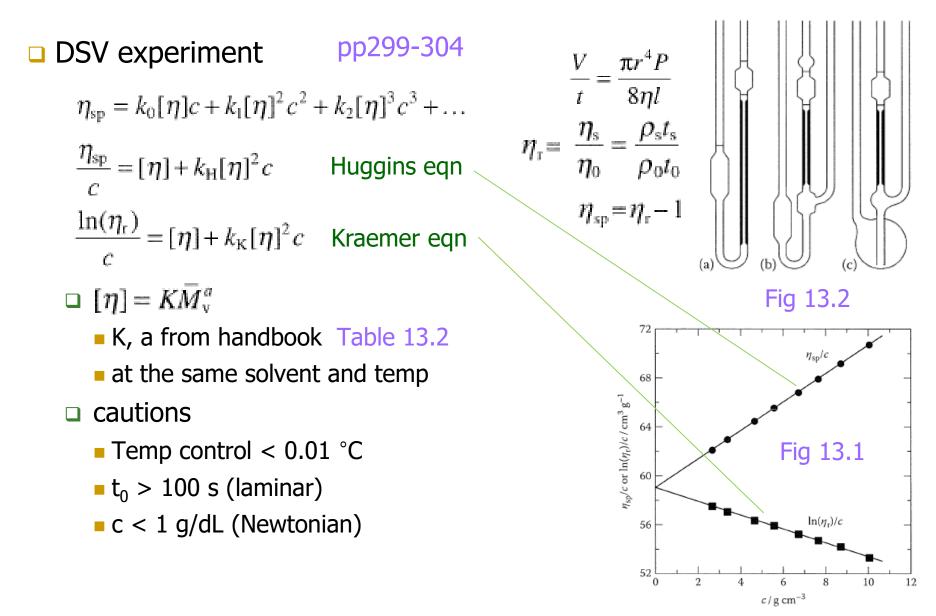
$$\bar{M}_{v} = \left(\frac{\sum n_{i}M_{i}^{1+a}}{\sum n_{i}M_{i}}\right)^{n}$$

 \Box 0.5 \leq a \leq 0.8

• 0.5 at θ -condition; often > 0.7


 \square M_n < M_v < M_w

• M_v close to M_w


$$a = 1 \rightarrow M_v = M_w$$

$$a = -1 \rightarrow M_v = M_n$$

pp300-301

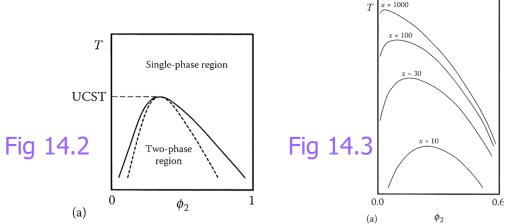
Molecular Weight of Species i

Sedimentation (by ultracentrifugation) 1 sl 18

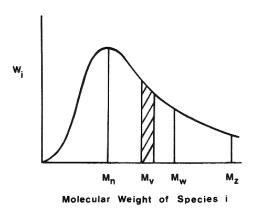
- molecule with higher MM sediments faster
 - ultracentrifuge for sedimentation > diffusion
- sedimentation equilibrium exp't
 - 5000 10000 rpm, days for equili
 - refractive index [conc'n] profile
 - $\hfill\square$ M_w and M_z
- sedimentation velocity exp't
 - 60000 70000 rpm, dynamic
 - movement of boundary layer
 - \square M_w
- MMD?
 - width of boundary layer

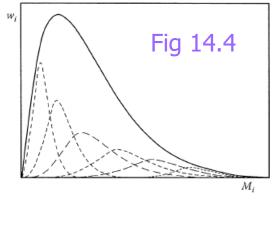
MMD and fractionation

MM of polymers has distribution


- MM averages
- MMD [MWD]
 - PDI = M_w/M_n
 - MMD affects property? some on rheology

□ fractionation p317


separate fractions of narrow(er) distribution


by lowering Temp or adding non-solvent

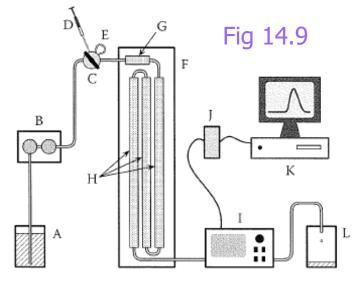
manually or (semi-)automatically

Ch 11-15 sl 19

Gel permeation chromatography (GPC) sl 20

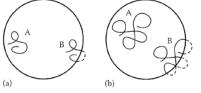
a size-exclusion chromatography (SEC)

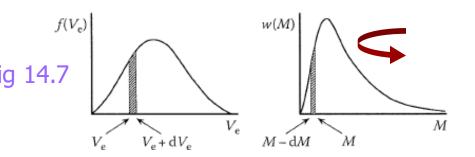
- separation by size using porous gel
- □ Larger molecules elute earlier.


□ elution volume V_e and size

$$V_{\rm e} = V_0 + V_{\rm i} \exp\left(\frac{-A_{\rm s}\overline{L}}{2}\right)$$
 smaller V_e for
larger L

 $L \sim$ diameter of molecule in sol'n


□ V_e to mol wt


$$[\eta] = \left(\frac{5}{2}\right) \frac{\mathbf{N}_{\mathrm{A}} V_{\mathrm{h}}}{M} \rightarrow V_{\mathrm{h}} = \left(\frac{2}{5}\right) \frac{[\eta]M}{\mathbf{N}_{\mathrm{A}}}$$
$$[\eta] = KM^{a}$$
$$M(V_{\mathrm{e}}) = \left[\frac{([\eta]M)_{V_{\mathrm{e}}}}{K}\right]^{1/(1+a)}$$
Figure (1)

pp318-325

Ch 11-15 *sl* 21

140

150

Polybutadiene

methacrylate)

 V_{e} / cm³

Opposite Poly[styrene-co-(methyl methacrylate)]

▽ 'Heterograft' polystyrene-co-poly(methyl

△ Polystyrene-graft-poly(methyl methacrylate)

\Box V_e to mol wt (cont'd) □ 'universal calibration'

$$M(V_{\rm e}) = \left[\frac{([\eta]M)_{V_{\rm e}}}{K}\right]^{1/(1+\alpha)}$$

Many polymers fall on the same curve on $log[\eta]M - V_e plot$.

'universal calibration curve'

Fig 14.8 10^{9} $(\eta)M / \text{cm}^3 \text{g}^{-1}$ 10^{8} 10^{7} 10^{6} 10^{5} 90 100 110 120 130

Polystyrene

 10^{10}

Polystyrene (comb)

Poly(vinyl chloride)

Poly(methyl methacrylate)

Polystyrene (star)

- experiment
 - Run GPC with sample and (anionic PS) standards.
 - For each fraction (V_e), get M.
 - $[\eta]_{PS}M_{PS} = [\eta]_{sample}M_{sample}$

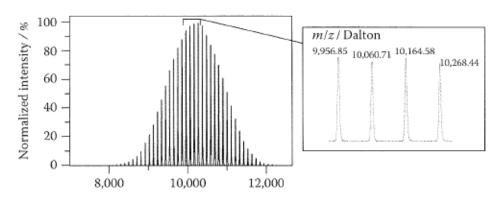
•
$$K_{PS}M_{PS}^{a(PS)+1} = K_{sample}M_{sample}^{a(sample)+1}$$

Calculate M_n, M_w, and MMD.

for each 'fraction' $M \approx M_n \approx M_v \approx M_w$

 $[\eta]M = KM^{1+a}$

Field-flow fractionation Ch 11-15 sl 22 forward-flow vs cross-flow and diffusion Flow inlet Flow outlet Top plate A В 8 Accumulation C wal Accumulation wall Accumulation wall


cross-flow? non-solvent, centrifuge, etc

useful for

- □ higher MM (than for GPC)
- biopolymers
- sometimes preparatory

Mass spectroscopy [--metry; MS] Ch 11-15 sl 23

- MS determines MM
 - □ by detecting molecular ion, M⁺
 - □ in vapor phase
 - □ For polymers;
 - non-volatile
 - fragmentation
- MALDI-ToF technique
 - a soft ionization
 - choice of the matrix critical
 - still for not-too-high MM
 - incomplete ionization, fragmentation, etc

pp331-340

Fig 14.13

Chapter 15 Structure Determination

Analysis of chemical composition and microstructure

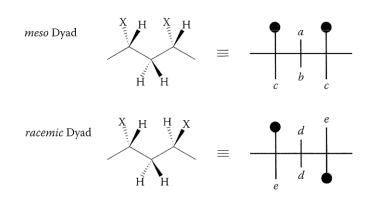
Spectroscopy

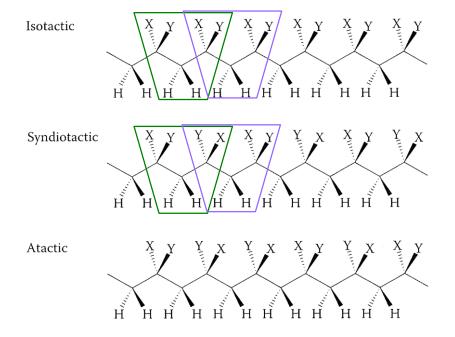
Ch 11-15 sl 25

UV/Vis

- double bonds and conjugations
- change in structures, especially outdoor
- □ additives (with =)

🗆 IR


- □ characteristic groups ~ identification
- □ copolymer composition, degree of branching, crystallinity, etc


🗆 Raman

- vibrational spectroscopy detecting change in polarizability
 - IR detects change in dipole moment.
 - mutual exclusion and complementary \rightarrow application similar to IR
- sensitive to local environment and orientation of bonds
 - some more applications; LAM, micromechanics, etc

NMR

- chemical structure
- chain dynamics and motion
 - using relaxation time and peak width
- sequence distribution in copolymers
- tacticity
 - affects crystallinity (and hence properties)

|CH

 CH_3

 CH_3

20

CH₂ -CH₂-CH $-CH_2-CH$ $|CH_3|$ **TABLE 15.3** $\dot{C}H_3$ CH₃ Sequences in Vinyl Homopolymers and Their Mole Fractions according to isotactic **Bernoullian Statistics** CH_2 Mole Fraction of CH (i) Sequence Type Designation ^a Projection Sequence in Terms of P_m^{a} (i) M $\mathbf{C}\mathbf{H}_2$ $|CH_3|$ CH Dyad P_m т syndiotactic CH_2 (ii) $1 - P_{m}$ r CH(ii) M P_m^2 Triad mmтттт $2P_m(1-P_m)$ mr (and rm) atactic $-CH_2 - CH_2$ $(1 - P_m)^2$ CH_3 rrrrrr P_m^3 Tetrad mmmmmrr $2P_m^2(1-P_m)$ mmrm mmr (and rmm) mmmr + rmrr rrrm $P_m(1-P_m)^2$ rmr mrrm $P_m^2(1-P_m)$ rmrm mrm rmmr $2P_m(1-P_m)^2$ rrm (and mrr) $(1 - P_m)^3$ 22.0 21.0 20.0 rrr $\delta_{\rm C}$