Homework No. 1

Due Date: March 24 (Mon) 6:30 PM

1.

- a) Using the information in the attached Table, find the weight-based figures of merit (specific strength, specific stiffness) for these materials. Plot the specific strength in both tension and compression versus the specific stiffness for these materials.
- b) Using the following cost data, determine cost-based figures of merit (specific cost) for these materials. Plot the cost figure of merit versus the weight figure of merit for the three cases of: tensile stiffness, tensile strength and compressive strength.

Material	Cost per pound	
1. 2024-T3 Aluminum	\$2.00	
2. 7075-T6 Aluminum	\$2.00	
3. 7175-T73 Aluminum	\$3.00	
4. Ti6Al-4V Titanium	\$14.00	
5. 300M Steel	\$1.00	
6. AISI 4130 Steel	\$0.25	
7. Typical Graphite/Epoxy	\$40.00	

c) What does all this information suggest about the use of these materials?

COMPARISON OF G/E WITH A FEW METAL ALLOYS

	Tensile Ult [MPa]	Compress Yield [MPa]	Modulus GPa	Specific Gravity
2024-T3 Aluminum	462	290	74	2.77
7075-T6 Aluminum	586	531	72	2.80
7175-T73 Aluminum	504	436	70	2.80
Ti6A1-4V Titanium	923	909	110	4.43
300M Steel	1931	1703	200	7.84
AISI 4130 Steel	655	517	200	7.84
$G/E (V_F = .60)$	1661	1698	130	1.61

Given a Weibull distribution with a scale factor $\beta = 4770$ and a shape factor $\alpha = 6.4$. Plot the probability density distribution p(x) versus x and the cumulative probability P(x) versus x on linear scales for x = 0 to 8000.

$$p(x) = \frac{\alpha}{\beta} \left(\frac{x}{\beta}\right)^{\alpha - 1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}}$$

$$P(x) = 1 - e^{-\left(\frac{x}{\beta}\right)^{\alpha}}$$

3.

Given the fiber and matrix data, $E_{Tf} = 2.3 \text{ Msi}$, $E_m = 0.5 \text{ Msi}$ Plot families of E_T vs. V_f (transverse composite stiffness vs. fiber volume fraction) curves, using

a) the mixed series-parallel model with $\eta = 0$, .25, .50, .75, 1.0

b) the Chamis model
$$E_T = 1 / \left(\frac{1 - \sqrt{V_e}}{E_m} + \frac{\sqrt{V_e}}{E_{Te}} \right)$$

4.

How does the following fictitious experimental data fit on these curves?

Given the following constituent data

	Fiber	Matrix
E _L (Msi)	34.0	.5
E _{Tf} (Msi)	2.3	.5
G _{LTf} (Msi)	2.9	.19
vLT	.27	.35
α _L (με/ F)	7.55	32,0

Make a simple estimate of the overall composite properties E_L , E_T , GLT, v_{LT} , α_L for fiber volume fractions V_f = .5 , .6 , .7