Homework No. 2

Due Date: April 07 (Mon) 6:30 PM

1.

By writing out the stress-strain equations as matrices, show the relationship between the 21 independent compliances in contracted notation S_{min} (m,n = 1 to 6) and the compliances in tensor notation S_{ijkl} (i,j,k,l = 1 to 3).

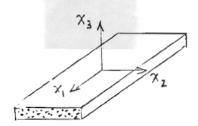
2.

Show that the 3-D compliances S_{ij} (i,j = 1 to 6) can be used without modification (with i,j = 1, 2, 6) for 2-D plane stress calculations. Show (but do not do the algebra) that this is not the case for the stiffnesses C_{ij} .

3.

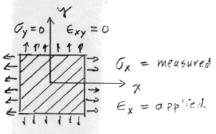
Given a transversly isotropic material about the x_1 axis.

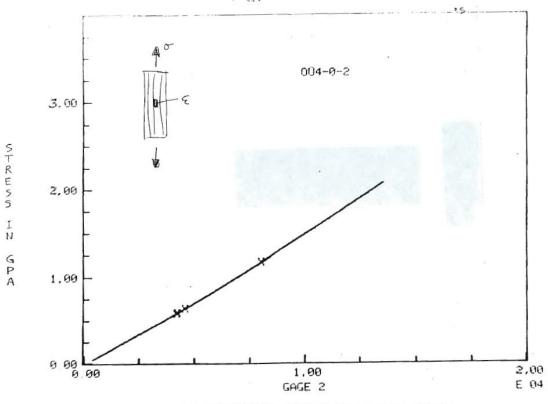
- a) Write out the 3-D compliances S_{ij} for this material. How many constants are required to characterize it?
- b) If the material is in plane stress along the x_1, x_2 axes ($\sigma_3 = \sigma_4 = \sigma_5 = 0$), what are the corresponding 2-D compliances S_{ij}^* ? How many constants are required to characterize it?

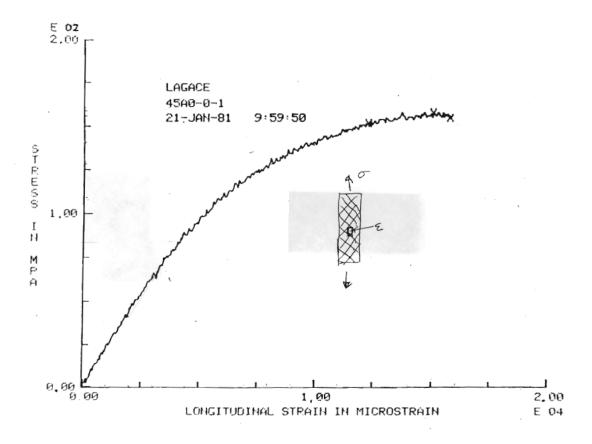


Attached are test results for two tests of laminates made from AS4/3501-6 material. The applied stress (in GPa or MPa) is plotted against the longitudinal strain measured with a strain gage (in $\mu strain$, i.e., strain times 10-6). The computer in some cases has printed "EOX" at the end of an axis — this means multiplying the values shown on that axis by 10

- The first graph is the results from a longitudinal tensile test. Use this information to find E_L for this material. Show how you derived your value from the test results. Your value may not agree exactly with published values due to test scatter.
- From other tests, we find $E_T = 9.8$ GPa and $v_{LT} = .30$. The second graph shows resuls of testing a $[+45/-45]_S$ laminate. Use this information, and the material properties you already know, to find G_{LT} for this material. Again show your work. To do this, consider a +45 ply as shown below. Assume that the boundary conditions on this ply are $\sigma_X = \text{applied stress}$ from the graph, $\sigma_Y = 0$, and $\varepsilon_{XY} = 0$ (not $\sigma_{XY} = 0$). Given that you know ε_X (from the strain gage), use the rotated Hooke's law $\sigma = Q_E$ to find the unknowns ε_{Y} , σ_{XY} , and G_{LT} . Use the early, linear region of the plot.
- c) Can you justify the assumptions used for the boundary conditions in b)?
- d) Compute the Q and S matrices for this material. Compare Q_{11} to E_L .







For a ply rotated by an angle θ , compute the rotated Q matrix, Q, for AS4/3501-6. Plot Q₁₁, Q₁₂, Q₁₆ and Q₆₆ for θ from 0 to 90 degrees

6.

Consider a stack of 3 plies of AS4/3501-6, 0.125 mm thick each, not glued together, in a $[0/90/0]_T$ arrangement. We apply to each ply individually, the boundary conditions of

$$\epsilon_X = .001$$
 $\sigma_Y = 0$ $\sigma_{XY} = 0$

- a) What are the stresses and strains σ_{X_i} ϵ_{X_i} in each of the plies?
- Why is what we just did, not a solution of the laminate problem (in b) which the plies are glued to each other)?

Note: For doing these calculations, and for later use, produce convenient computer subroutines, MATLAB routines, etc., for your personal use. Suggested routines are,

- Compute the Q matrix from given EL, ET, vLT, GLT. a)
- b)
- Rotate Q by θ Invert Q (get S) and extract effective engineering constants. c)