4541.554 Introduction to CAD
 Oct. 19, 2006

Homework 2

(Sample problems from previous year's midterm)

Due Date: Oct. 24, 2007

1. Following is a pseudo code of Bellman-Ford algorithm for solving the shortest path problem.

BELLMAN_FORD (G(V, E, W)) {
s01 = 0;
for (i = 1 to |V-1|) si1 = w0,i;
for (j = 1 to |V-1|) {
 for (i = 1 to |V-1|) {
 sij+1 = min{sij, (skj + wk,i)};
 }
 if (sij+1 == sij for all i) return (TRUE);
}
return (FALSE)
}

(1) [image: image1.wmf]

4

Analyze the code line by line to explain that the complexity of the algorithm is O(|V||E|). [10 points]

(2) [image: image2.wmf]v1

u1

v2

u2

v3

u3

v4

u4

v5

u5

v6

u6

initial matching

Explain the condition under which the algorithm returns TRUE. And show, in this case, that the algorithm needs no more than |V|-1 iterations to finish. [10 points]

2. Suppose we are given a layout of eight objects (A to H) as shown in the following figure.
	object
	width, height
	current position of object's center

(x, y coordinates)

	A
	2, 6
	1, 13

	B
	2, 6
	5, 3

	C
	6, 2
	5, 11

	D
	4, 8
	10, 8

	E
	2, 4
	15, 16

	F
	4, 2
	20, 15

	G
	2, 4
	19, 12

	H
	2, 8
	19, 6

[image: image3.emf]v2

u2 v3 u3

v4

u4 v5

u5

v6 u6

[image: image4.emf]v1 u1

v2 u2

v3 u3

v4 u4

v5 u5

v6 u6

[image: image5.emf]v1 u1

v2 u2

v3 u3

v4 u4

v5 u5

v6 u6

We'd like to perform compaction of the layout by repeating 1-D compaction based on constraint graph. Assume that objects C and G are wires whose length can change. When a wire makes contact with a side of an object, the contact point can be anywhere of the side. For example, C can touch anywhere on the right edge of A. However, the width of the touching face should be at least 2. The minimum spacing between two objects is 2 (except wire connection). Perform compaction in y-direction first and then in x-direction. Draw constraint graphs (consider merging vertices if possible). Obtain the area of the resulting rectangular layout. You don't need to explain the details of algorithm application. [20 points]

[image: image6.wmf]v1

u1

v2

u2

v3

u3

v4

u4

v5

u5

v6

u6

initial matching

[image: image7.emf]v2

u2 v3 u3

v4

u4 v5

u5

v6 u6

area=12x18=216

3. Given the initial matching shown below with thick lines for a bipartite graph, find alternating paths to solve the Bipartite Cardinality Matching Problem. [10 point]

4. Prove that the intersection of any number of convex sets is convex. [10 points]

5. Prove the NP-completeness of the vertex cover problem by using the fact that clique problem is NP-complete. [20 points]

F

H

G

E

B

D

C

A

Assume we are given a certificate for a yes instance of vertex cover problem, which is to check a graph with N vertices and E edges to see if there exist L vertices that cover all edges.

To see if the L vertices in the certificate really cover all edges, we check each edge to assure that at least one of the two vertices connected by the edge belongs to the set of L vertices. This process takes O(E) time, which is polynomial in N. So the problem is in NP.

Now we polynomially transform the clique problem to a vertex cover problem. The clique problem is to check a graph with N vertices and F edges to see if there is a clique of size K,

If such a clique exists, then the vertices in the clique comprise an independent set in the complement and the set of remaining vertices cover all edges in the complement. Therefore, there is a clique of size K iff there are L=N-K vertices that cover all edges in the complement. The transformation can be done by just obtaining the complement, which takes polynomial time, O(|V|2).

A convex combination of any two elements in a convex set belongs to the same set. Let’s take any two elements in the intersection of N convex sets, for arbitrary N. Then the two elements belong to every convex set. Therefore, a convex combination of the two elements belongs to every convex set, which implies that the convex combination is also in the intersection of the N convex sets. Therefore, the intersection itself is a convex set.

5

3

2

critical path: so-F-GH-si

length:12

critical path: soADHsi

length:18

4

3

-2

-2

-3

-3

6

7

4

1

2

3

�	5

4

1

so

GH

si

B

E

D

F

C

A

-1

-1

� EMBED PowerPoint.Slide.8 ���

5

1

1

2

� EMBED PowerPoint.Slide.8 ���

5

4

5

5

5

1

so

� EMBED PowerPoint.Slide.8 ���

si

B

E

D

F

GH

A

It is obvious that the algorithm converges to return TRUE only when there is no negative cycle (if there is a negative cycle, then some path weights will decrease indefinitely). In that case, it converges within |V|-1 iterations. To show this, consider the final solution path. The first edge in the path is determined in the initialization phase. Since it is the shortest path from the source to the first vertex (note that the edge is on the final solution path), it will remain so until the algorithm finishes. In the same manner, the second edge on the final solution path is determined in the first iteration. Continuing this way, k-th edge on the final solution path is determined in the (k-1)-th iteration. Since we have at most |V|-1 edges in the final solution path, the algorithm finishes after at most |V|-2 iterations. The final (|V|-1)-th iteration is needed to assure that there is no further update.

BELLMAN_FORD (G(V, E, W)) {�s01 = 0; 	- O(1)�for (i = 1 to |V-1|) si1 = w0,i; 		- O(|V|)�for (j = 1 to |V-1|) { 	- repeats O(|V|) times� for (i = 1 to |V-1|) { 	- for each vertex,� sij+1 = min{sij, (skj + wk,i)}; 	- look at all incoming edges� } 	- O(|E|)� if (sij+1 == sij for all i) return (TRUE); - O(1) using a flag�}�return (FALSE)

} - complexity=O(|V|)O(|E|)=O(|V||E|)

PAGE
4

_1226743806.ppt

v1

u1

v2

u2

v3

u3

v4

u4

v5

u5

v6

u6

_1226744237.ppt

v1

u1

v2

u2

v3

u3

v4

u4

v5

u5

v6

u6

initial matching

_1226743325.ppt

v2

u2

v3

u3

v4

u4

v5

u5

v6

u6

