
HW#6

- **9-2.** For uniform waveguides, use appropriate relations in Section 9-2 to:
 - a) Prove that the universal diagram relating u_g/u and f_c/f is a quarter-circle with a unity radius,
 - b) Plot the universal graph of λ_a/λ cursus f/f_c .
- **9-3.** Assume that a TE wave of a frequency f is launched along the z-direction in the parallel-plate waveguide in following figure. The dielectric medium between the plates has constitutive parameters ϵ and μ . (a) Find the phasor expression for $H_z^0(y)$. (b) Find the cutoff frequency for the TE₁ mode. (c) Write the instantaneous expression for all the field components of the TE₁ mode.

- **9-7.** A standard air-filled S-band rectangular waveguide has dimensions a = 7.21(cm) and b = 3.40(cm). What mode types can be used to transmit electromagnetic waves having the following wavelengths?
 - a) $\lambda = 10$ (cm) b) $\lambda = 5$ (cm)
- **9-9.** An air-filled $a \times b$ (b < a < 2b) rectangular waveguide is to be constructed to operate at 3 (GHz) in the dominant mode. We desire the operating frequency to be at least 20% higher than the cutoff frequency of the dominant mode and also at least 20% below the cutoff frequency of the next higher-order mode.
 - c) Give a typical design for the dimensions *a* and *b*.
 - d) Calculate for your design β , u_p , λ_q , and the wave impedance at the operating frequency.
- **9-11.** Starting from $E_z^0(x,y) = E_0 \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) (V/m)$,
 - a) Obtain the expressions of $E_x^0(x,y)$, $E_y^0(x,y)$, $H_x^0(x,y)$, and $H_y^0(x,y)$ for the TM₁₁ mode, and
 - b) Obtain a formula for the average power P_{av} transmitted along an $a \times b$ waveguide.

- **9-15.** An electromagnetic wave is to propagate along an air-filled $a \times b$ rectangular waveguide at the dominant mode. Assume a = 2.50(cm) and the usable bandwidth to be between $1.15(f_c)_{10}$ and 15% below the cutoff frequency of the next higher mode.
 - a) Calculate and compare the permissible bandwidth for b=0.25a, b=0.50a, and b=0.75a.
 - b) Calculate and compare the average powers transmitted along the three guides in part (a) at 7 (GHz) if the maximum electric intensity is 10 (kV/m). Neglect the losses.