SEOUL NATIONAL UNIVERSITY

SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING
SYSTEM CONTROL
Fall 2014
HW \#5

1. Consider the unity-feedback system with the open-loop transfer function :

$$
G(s)=\frac{10}{s+1}
$$

Obtain the steady-state output of the system when it is subjected to each to the following inputs:
(a) $r(t)=\sin \left(t+30^{\circ}\right)$

Sol) $C_{\mathrm{ss}}(t)=0.905 \sin \left(t+24.8^{\circ}\right)$
(b) $r(t)=2 \cos \left(2 t-45^{\circ}\right)$

Sol) $C_{s s}(t)=1.79 \cos \left(2 t-55.3^{\circ}\right)$
(c) $r(t)=\sin \left(t+30^{\circ}\right)-2 \cos \left(2 t-45^{\circ}\right)$

Sol) $C_{s s}(t)=0.905 \sin \left(t+24.8^{\circ}\right)-1.79 \cos \left(2 t-55.3^{\circ}\right)$
2. Sketch the polar plots of the open-loop transfer function

$$
G(s) H(s)=\frac{K\left(T_{a} s+1\right)\left(T_{b} s+1\right)}{s^{2}(T s+1)}
$$

for the following two cases:
(a) $T_{a}>T>0, T_{b}>T>0$
(b) $T>T_{a}>0, \quad T>T_{b}>0$

Sol) Typical Nyquist curves for the cases (a) and (b) are shown below.
(a) $T_{a}=1.2, T_{b}=0.5, T=0.4, K=0.1$
(b) $T_{a}=0.6, T_{b}=1, T=2, K=1$

3. Consider the closed-loop system shown in Figure 3-1. G(s) has no poles in the right-half s plane. If the Nyquist plot of $G(s)$ is as shown in Figure 3-2(a), is this system stable? If the Nyquist plot is as shown in Figure 3-2(b), is this system stable?

Figure 3-1 Closed-loop system

Figure 3-2 Nyquist plot
Sol) Since $G(s)$ has no poles in the right-half s plane, the stability of the system can be studied by checking the enclosure of the $-1+\mathrm{j} 0$ point by the Nyquist locus for $0<\omega<\infty$.

If the Nyquist plot of $G(s)$ is as shown in Figure 3-2(a), then there is no enclosure of the $1+\mathrm{j} 0$ point. Hence, the system is stable.
For the case of the Nyquist plot shown in Figure 3-2(b), the $-1+\mathrm{j} 0$ point is enclosed by the Nyquist plot of $\mathrm{G}(\mathrm{jw})$ for $0<\omega<\infty$. Hence, the system is unstable.
4. Consider the system shown in Figure 4-1. Draw a Bode diagram of the open-loop transfer function $G(s)$. Determine the phase margin and gain margin.

Figure 4-1 Control system
Sol) A bode diagram of the system is shown below.

From this Bode diagram, we find the phase margin and gain margin to be 27° and 13 dB , respectively.
5. Consider a unity-feedback control system with the open-loop transfer function

$$
G(s)=\frac{K}{s\left(s^{2}+s+4\right)}
$$

Determine the value of the gain K such that the phase margin is 50°. What is the gain margin with this gain K?

Sol) $G(s)=\frac{K}{s\left(s^{2}+s+4\right)}=\frac{0.25 K}{s\left(0.25 s^{2}+0.25 s+1\right)}$
The quadratic term in the denominator has the undamped natural frequency of $2 \mathrm{rad} / \mathrm{sec}$ and the damping ratio of 0.25 . Define the frequency corresponding to the angle of -130° to be ω_{1}.

$$
\begin{aligned}
\angle G\left(j \omega_{1}\right) & =-\angle j \omega_{1}-\angle\left(1-0.25 \omega_{1}^{2}+j 0.25 \omega_{1}\right) \\
& =-90^{\circ}-\tan ^{-1} \frac{0.25 \omega_{1}}{1-0.25 \omega_{1}^{2}}=-130^{\circ}
\end{aligned}
$$

Solving this last equation for ω_{1}, we find $\omega_{1}=1.491 \mathrm{rad} / \mathrm{sec}$. Thus, the phase angle becomes equal to -130° at $\omega=1.491 \mathrm{rad} / \mathrm{sec}$. At this frequency, the magnitude must be unity, or $\left|G\left(j \omega_{1}\right)\right|=1$. The required gain K can be determined from

$$
|G(j 1.491)|=\left|\frac{0.25 K}{(j 1.491)(-0.555+j 0.3725+1)}\right|=0.2890 K
$$

Setting $|G(j 1.491)|=0.2890 K=1$, we find

$$
K=3.46
$$

Note that the phase crossover frequency is a $\omega=2 \mathrm{rad} / \mathrm{sec}$, since

$$
\angle G(j 2)=-\angle(j 2)-\angle\left(-0.25 \times 2^{2}+0.25 \times j 2+1\right)=-90^{\circ}-90^{\circ}=-180^{\circ}
$$

The magnitude $|G(j 2)|$ with $K=3.46$ becomes

$$
|G(j 2)|=\left|\frac{0.865}{(j 2)(-1+0.5 j+1)}\right|=0.865=-1.26 d B
$$

Thus, the gain margin is 1.26 dB . The Bode diagram of $\mathrm{G}(\mathrm{jw})$ with $\mathrm{K}=3.46$ is shown below.

6. Referring to the closed-loop system shown in Figure 6-1, design a lead compensator $\mathrm{G}_{\mathrm{c}}(\mathrm{s})$ such that the phase margin is 45°, gain margin is not less than 8 dB , and the static velocity error constant K_{v} is $4.0 \mathrm{sec}^{-1}$. Plot unit-step and unit-ramp response curves of the compensated system with MATLAB.

Figure 6-1 Closed-loop system
Sol) Let us use the following lead compensator:

$$
G_{c}(s)=K_{c} \alpha \frac{T s+1}{\alpha T s+1}=K_{c} \frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}}
$$

Since K_{v} is specified as $4.0 \mathrm{sec}^{-1}$, we have

$$
K_{v}=\lim _{s \rightarrow 0} s K_{c} \alpha \frac{T s+1}{\alpha T s+1} \frac{K}{s(0.1 s+1)(s+1)}=K_{c} \alpha K=4
$$

Let us set $\mathrm{K}=1$ and define $K_{c} \alpha=\hat{K}$. Then,

$$
\hat{K}=4
$$

Next, plot a Bode diagram of

$$
\frac{4}{s(0.1 s+1)(s+1)}=\frac{4}{0.1 s^{3}+1.1 s^{2}+s}
$$

The following MATLAB program produces the Bode diagram shown below.

```
num = [4];
den = [l0.1 1.1 1 0}]
bode(num, den)
grid on
title('Bode Diagram of G(s)=4/[s(0.1s+1)(s+1)]')
```


From this plot, the phase and gain margins are 17° and 8.7 dB , respectively. Since the specifications call for a phase margin 45°, let us choose

$$
\phi_{m}=45^{\circ}-17^{\circ}+12^{\circ}=40^{\circ}
$$

(This means that 12° has been added to compensate for the shift in the gain crossover frequency.) The maximum phase lead is 40°. Since

$$
\sin \phi_{m}=\frac{1-\alpha}{1+\alpha} \quad\left(\phi_{m}=40^{\circ}\right)
$$

α is determined as 0.2174 . Let us choose, instead of 0.2174 , α to be 0.21 .

Next step is to determine the corner frequencies $\omega=1 / T$ and $\omega=1 /(\alpha T)$ of the lead compensator. Note that the maximum phase-lead angle ϕ_{m} occurs at the geometric mean of the two corner frequencies, or $\omega=1 /(\sqrt{\alpha} T)$. The amount of the modification in the magnitude curve at $\omega=1 /(\sqrt{\alpha} T)$ due to the inclusion of the term $(T s+1) /(\alpha T s+1)$ is

$$
\left|\frac{1+j \omega T}{1+j \omega \alpha T}\right|_{\omega=\frac{1}{\sqrt{\alpha} T}}=\frac{1}{\sqrt{\alpha}}
$$

Note that

$$
\frac{1}{\sqrt{\alpha}}=\frac{1}{\sqrt{0.21}}=2.1822=6.7778 \mathrm{~dB}
$$

We need to find the frequency point where, when the lead compensator is added, the total magnitude becomes 0 dB . The magnitude $\mathrm{G}(\mathrm{jw})$ is -6.7778 dB corresponds to $\omega=2.81 \mathrm{rad} / \mathrm{sec}$. We select this frequency to be the new gain crossover frequency ω_{c}. Then we obtain

$$
\begin{gathered}
\frac{1}{T}=\sqrt{\alpha} \omega_{c}=\sqrt{0.21} \times 2.81=1.2877 \\
\frac{1}{\alpha T}=\frac{\omega_{c}}{\sqrt{\alpha}}=\frac{2.81}{\sqrt{0.21}}=6.1319
\end{gathered}
$$

Hence

$$
G_{c}(s)=\frac{4}{0.21} \frac{s+1.2877}{s+6.1319}=4 \frac{0.7766 s+1}{0.16308 s+1}
$$

The open-loop transfer function becomes as

$$
\begin{aligned}
G_{c}(s) G(s) & =4 \frac{0.7766 s+1}{0.16308 s+1} \frac{1}{s(0.1 s+1)(s+1)} \\
& =\frac{3.1064 s+4}{0.01631 s^{4}+0.2744 s^{3}+1.2631 s^{2}+s}
\end{aligned}
$$

This open-loop transfer function yields phase margin of 45° and gain margin of 13 dB . So, the requirements on the phase margin and gain margin are satisfied. The closed-loop transfer function of the designed system is

$$
\frac{C(s)}{R(s)}=\frac{3.1064 s+4}{0.01631 s^{4}+0.2794 s^{3}+1.2631 s^{2}+4.1064 s+4}
$$

The following MATLAB program produces the unit-step response curve as shown below.

```
numc = [3.1064 4];
denc = [0.01631 0.2794 1.2631 4.1064 4];
step(numc,denc)
grid
title('Unit-Step Response of Compensated system')
```


Similarly, the following MATLAB program produces the unit-ramp response curve as shown below.

```
numc = [3.1064 4];
denc = [0.01631 0.2794 1.2631 4.1064 4 0];
t = 0:0.01:5;
c = step(numc,denc,t);
plot(t,t,t,c)
grid
legend('Input', 'Output', 'location', 'northwest')
title('Unit-Ramp Response of Compensated system')
xlabel('Time (sec)')
ylabel('Unit-Ramp Input and System Output')
```


