1. Consider the following system:

$$
\dddot{y}+6 \ddot{y}+11 \dot{y}+6 y=6 u
$$

Obtain a state-space representation of this system in a diagonal canonical form.
Sol) The transfer function representation of this system is

$$
\frac{Y(s)}{U(s)}=\frac{6}{s^{3}+6 s^{2}+11 s+6}=\frac{6}{(s+1)(s+2)(s+3)}
$$

The partial-fraction expansion of $\mathrm{Y}(\mathrm{s}) / \mathrm{U}(\mathrm{s})$ is

$$
\frac{Y(s)}{U(s)}=\frac{3}{s+1}+\frac{-6}{s+2}+\frac{3}{s+3}
$$

Then, a diagonal canonical form of the system is

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] u} \\
& y=\left[\begin{array}{lll}
3 & -6 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

2. Given the system equation

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Find the solution in terms of the initial conditions $x_{1}(0), x_{2}(0)$, and $x_{3}(0)$.
Sol) The given state matrix is in the Jordan canonical form. The eigenvalues are

$$
\lambda_{1}=2, \lambda_{2}=2, \lambda_{3}=2
$$

Since

$$
e^{A t}=\left[\begin{array}{ccc}
e^{2 t} & t e^{2 t} & \frac{1}{2} t^{2} e^{2 t} \\
0 & e^{2 t} & t e^{2 t} \\
0 & 0 & e^{2 t}
\end{array}\right]
$$

We have

$$
x(t)=e^{A t} x(0)
$$

Or

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{ccc}
e^{2 t} & t e^{2 t} & \frac{1}{2} t^{2} e^{2 t} \\
0 & e^{2 t} & t e^{2 t} \\
0 & 0 & e^{2 t}
\end{array}\right]\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]
$$

※ General A
$A P_{i}=\lambda_{i} P_{i}$, where λ_{i} is eigenvalue and P_{i} is corresponding eigenvector.

$$
A\left[\begin{array}{lllll}
P_{1} & P_{2} & P_{3} & \ldots & P_{n}
\end{array}\right]=\left[\begin{array}{lllll}
P_{1} & P_{2} & P_{3} & \ldots & P_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & \ddots \\
0 & \lambda_{2} & \ddots & 0 \\
0 & \ddots & \ddots & 0 \\
\ddots & 0 & 0 & \lambda_{n}
\end{array}\right]
$$

$$
A P=P \Lambda
$$

$$
A=P \Lambda P^{-1} \ldots A^{n}=P \Lambda^{n} P^{-1}
$$

Hence, $e^{A t}=P e^{\Lambda t} P^{-1} \rightarrow$ more useful
3. Consider the system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

The output is given by

$$
y=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

(a) Show that the system is not completely observable.

Sol) The rank of

$$
\left[\begin{array}{lll}
C^{T} & (C A)^{T} & \left(C A^{2}\right)^{T}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 4 \\
1 & 5 & 16 \\
1 & 2 & 4
\end{array}\right]
$$

is two, because

$$
\left|\begin{array}{ccc}
1 & 2 & 4 \\
1 & 5 & 16 \\
1 & 2 & 4
\end{array}\right|=0,\left|\begin{array}{cc}
1 & 2 \\
1 & 5
\end{array}\right|=3
$$

Hence, the system is not completely observable.
(b) Show that the system is completely observable if the output is given by

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Sol) The rank of

$$
\left[\begin{array}{lll}
C^{T} & (C A)^{T} & \left(C A^{2}\right)^{T}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & 1 & 2 & 2 & 4 & 4 \\
1 & 2 & 5 & 13 & 16 & 44 \\
1 & 3 & 2 & 6 & 4 & 12
\end{array}\right]
$$

is three, because the determinant of a $3 x 3$ matrix consisting of the first, fourth, and sixth column is

$$
\left|\begin{array}{ccc}
1 & 2 & 4 \\
1 & 13 & 44 \\
1 & 6 & 12
\end{array}\right|=-72
$$

Hence, the system is completely observable.
4. Consider the system defined by

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -2 & -2 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]+\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] u
$$

Is the system completely state controllable?
Sol) The rank of

$$
\left[\begin{array}{ccc}
B & A B & A^{2} B
\end{array}\right]=\left[\begin{array}{ccc}
2 & -4 & 0 \\
0 & 1 & 0 \\
1 & 1 & -5
\end{array}\right]
$$

is three, because

$$
\left|\begin{array}{ccc}
2 & -4 & 0 \\
0 & 1 & 0 \\
1 & 1 & -5
\end{array}\right|=-10
$$

Hence, the system is completely state controllable.
5. Consider the system defined by

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -5 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] u
$$

By using the state-feedback control $u=-K x$, it is desired to have the closed-loop poles at $s=-2 \pm j 4, s=-10$. Determine the state-feedback gain matrix K.

Sol) Define a gain matrix K as

$$
K=\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right]
$$

The closed-loop system with a state-feedback control defined by

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-k_{1} & -k_{2} & 1-k_{3} \\
-1-k_{1} & -5-k_{2} & -6-k_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=A^{\prime}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

The characteristic equation of closed loop system can be obtained as below.

$$
\begin{aligned}
\left|s I-A^{\prime}\right| & =\left|\begin{array}{ccc}
s & -1 & 0 \\
k_{1} & s+k_{2} & -1+k_{3} \\
1+k_{1} & 5+k_{2} & s+6+k_{3}
\end{array}\right| \\
& =s^{3}+\left(k_{2}+k_{3}+6\right) s^{2}+\left(k_{1}+7 k_{2}-5 k_{3}+5\right)+7 k_{1}-k_{3}+1
\end{aligned}
$$

Desired closed-loop poles are $s=-2 \pm j 4, s=-10$. Therefore, characteristic equation should be

$$
s^{3}+14 s^{2}+60 s+200
$$

Hence, a gain matrix K is

$$
\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 7 & -5 \\
7 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\left[\begin{array}{c}
8 \\
55 \\
199
\end{array}\right] \Rightarrow\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 7 & -5 \\
7 & 0 & -1
\end{array}\right]^{-1}\left[\begin{array}{c}
8 \\
55 \\
199
\end{array}\right]=\left[\begin{array}{c}
28.7831 \\
5.5181 \\
2.4819
\end{array}\right]
$$

