SEOUL NATIONAL UNIVERSITY SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

SYSTEM CONTROL	Fall 2014
HW #6	Assigned: November 11 (Tu)
	Due: November 20 (Th)

- 1. Modern Control Engineering, Ogata, Fifth Ed. B-9-2.
- 2. Modern Control Engineering, Ogata, Fifth Ed. B-9-7.
- 3. Modern Control Engineering, Ogata, Fifth Ed. B-9-17.
- 4. Consider the system defined by

$\int \dot{x}$	1		-1	-2	-2]	$\begin{bmatrix} \dot{x}_1 \end{bmatrix}$		2	
\dot{x}	2	=	0	-1	1	\dot{x}_2	+	0	u
$\begin{bmatrix} \dot{x} \end{bmatrix}$	3_		1	0	-1	\dot{x}_3		1	

Is the system completely state controllable?

5. Consider the system defined by

\dot{x}_1		0	1	0]	$\begin{bmatrix} \dot{x}_1 \end{bmatrix}$		$\begin{bmatrix} 0 \end{bmatrix}$	
\dot{x}_2	=	0	0	1	\dot{x}_2	+	1	u
\dot{x}_3		1	-5	-6	\dot{x}_3		1	

By using the state-feedback control u = -Kx, it is desired to have the closed-loop poles at $s = -2 \pm j4$, s = -10. Determine the state-feedback gain matrix K.