Homework #1 - Solutions

Released: 09/22/2014 (Mon) - Due: 10/01/2014 (Wed), in class

The homework will be NOT graded, but we will check for MISSING ANSWERS and CHEATING. Note that a cheated homework will get 80% of the lowest score in the class. You can give the answers <u>either</u> in English <u>or</u> Korean.

1. [Introduction to environmental engineering] Considering the history of environmental engineering, discuss why the Environmental Engineering Program exists as a module of the Department of Civil and Environmental Engineering in many colleges including us.

Answer) Environmental engineering stems from civil engineering. At the time people began to study environment issues, which can be dated back to mid-1800s, it was called as sanitary engineering with a major focus on providing safe water and removing waste generated by humans. It was mostly civil engineers who studied the sanitary engineering, and thus, sanitary engineering was considered as a part of civil engineering. As providing safe water and removing wastes involves the design and construction of pipelines, sewers, treatment facilities, and landfills, these conventional topics of environmental engineering (or sanitary engineering) are closely related to civil engineering.

2. [Basic chemistry concepts] A Na₂CO₃ solution is prepared by adding 20.00 g of Na₂CO₃ to a flask and adding pure water until it reaches the 1.00-L mark. What is the concentration of Na₂CO₃ in units of (a) mg/L; (b) molarity; and (c) normality?

Answer)

(a) $\frac{20.00 \, g}{1L} \times \frac{10^3 \, mg}{1 \, g} = 2.000 \times 10^4 \, mg \, / L$

(b) Na_2CO_3 molecular weight = 105.99

 $\frac{20.00\,g}{1L} \times \frac{1}{105.99\,g/mol} = 0.1887\,M$

(c) 1 mole of Na_2CO_3 contains 2 moles of Na^+ and 1 moles of $CO_3^{2^-}$, so each ion will have 2 moles of charge equivalents.

 $0.1887 M \times 2 = 0.3774 N$

3. [Basic chemistry concepts] A FePO₄ solution is prepared by adding 2.4 g of FePO₄ to a flask and bringing the final volume to 1.00 L by adding water having a PO_4^{3-} concentration of 1.0 mg/L. What is the concentration of soluble iron in this solution? (temperature = 25° C)

Answer)

Atomic weights: Fe 55.85, P 30.97, O 16.00

 $pK_s \text{ of } FePO_4 = 21.9, K_s = 10^{-21.9} (at 25 °C)$

It looks like the solubility of FePO₄ is pretty low, so let's assume that only a very small fraction of the added FePO₄ dissolves in water.

Then, the PO_4^{3-} concentration should still be quite close to 1.0 mg/L

$$\left[PO_{4}^{3-}\right] = \frac{1.0 \, mg \, / \, L}{\left(30.97 + 4 \times 16.00\right)g \, / \, mol} \frac{1g}{10^{3} \, mg} = 1.05 \times 10^{-5} \, M$$

As $[PO_4^{3^-}]$ is much lower than 10^{-2} M, we can further assume that (molarity) \approx (activity)

$$K_{s} = 10^{-21.9} = \left[Fe^{3+}\right]\left[PO_{4}^{3-}\right] = \left[Fe^{3+}\right] \times \left(1.05 \times 10^{-5} M\right)$$
$$\left[Fe^{3+}\right] = 1.20 \times 10^{-17} M$$

This proves that our assumption was correct.

4. [Basic chemistry concepts] An acetic acid (CH₃COOH) solution is prepared in water by adding <u>0.2</u> g of CH₃COONa and bringing the volume to 1.0 L with pure water. The final pH is measured to be 5.25. What are the concentrations of CH₃COO⁻ and CH₃COOH in solution? (temperature = 25° C)

* Instructor note: Let me correct the amount of CH₃COONa added to the solution - <u>1.1 g</u> (in the homework I handed out) to <u>0.2 g</u>. I did not intend to make the calculation of activity coefficients necessary. Addition of 1.1 g CH₃COONa into 1.0 L water gives 0.0134 M, so in this case you cannot use the dilute solution assumption (i.e., molarity = activity). As you see below, addition of 0.2 g CH₃COONa gives 2.44 x 10⁻³ M, and you can use molarity for activity. Remember that in this class, we assume molarity = activity if the ionic strength is smaller than 10⁻² M.

Answer)

Atomic weights: C 12.01, H 1.01, O 16.00, Na 22.99

[457.210A.002] Environmental Engineering

Instructor: Choi, Yongju

$$CH_3COONa \ added = \frac{0.2 \ g}{(2 \times 12.01 + 3 \times 1.01 + 2 \times 16.00 + 22.99)} = 2.44 \times 10^{-3} \ mole$$

The CH₃COONa added will be dissociated into CH₃COO⁻ and Na⁺. CH₃COO⁻ (acetate) may maintain its form or get a proton (H^+) to become CH₃COOH (acetic acid).

So, find that this reaction is involved:

$$CH_3COOH = CH_3COO^- + H^+$$

*pKa of CH*₃*COOH*: 4.75

$$K_{a} = 10^{-4.75} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]}$$
(1)

As 2.44 x 10⁻³ mole of CH₃COONa was added to 1.0 L water,

$$[CH_{3}COO^{-}] + [CH_{3}COOH] = 2.44 \times 10^{-3} M$$
⁽²⁾

From (1), as pH=5.25, $[H^+]=10^{-5.25} M$ (activity \approx molarity as ionic strength $< 10^{-2} M$)

$$\left[CH_{3}COO^{-}\right] = 3.16\left[CH_{3}COOH\right] \tag{3}$$

Plugging in (3) in (2):

$$[CH_3COOH] = 5.87 \times 10^{-4} M$$

$$[CH_3COO^-] = 1.85 \times 10^{-3} M$$

5. [Basic chemistry concepts] Hypochlorous acid (HOCl) decays in the presence of ultraviolet radiation. Assuming that degradation occurs according to first-order kinetics, how long does it take for the concentration of hypochlorous acid to reach 0.05 mg/L if the initial concentration was 3.65 mg/L? The first-order reaction constant is 0.12 day^{-1} .

Answer)
$$\frac{d[HOCl]}{dt} = -k[HOCl]$$
$$\frac{1}{[HOCl]}d[HOCl] = -k \cdot dt$$

[457.210A.002] Environmental Engineering

$$\int_{[HOCI]_{t=t}}^{[HOCI]_{t=t}} \frac{1}{[HOCI]} d[HOCI] = -\int_{0}^{t} k \cdot dt$$

$$ln[HOCI]_{[HOCI]_{t=t}}^{[HOCI]_{t=t}} = -kt|_{0}^{t}$$

$$ln \frac{[HOCI]_{t=t}}{[HOCI]_{t=0}} = -kt$$

$$t = -\frac{1}{k} ln \frac{[HOCI]_{t=t}}{[HOCI]_{t=0}} = \frac{0.05 \, mg \, / L}{3.65 \, mg \, / L}, \ k = 0.12 \, day^{-1}$$

$$\therefore t = 35.8 \, days$$

6. [Basic chemistry concepts] You bought a bottle of carbonated water which is completely sealed and does not have any headspace¹. You found that the pH of the water was 3.5. You wanted to know better about the water you would drink and called the factory to find that they blow in 0.1 g of CO₂ into a carbonate-free² water to make a 250 mL bottle. The bottle was pressurized that all CO₂ blown in was dissolved in the water. Calculate the concentrations of $[H_2CO_3^*]$, $[HCO_3^-]$, and $[CO_3^{2-}]$ in the bottle. (temperature = 25°C)

¹This means the water is filled to the top

²This means that before CO₂ was blown in, there was no carbonate species ($[H_2CO_3^*]$, $[HCO_3^-]$, or $[CO_3^{2-}]$) in the water.

Answer)

This is a closed system.

Carbonate system: $H_2CO_3^* = H^+ + HCO_3^- = 2H^+ + CO_3^{2-}$

$$K_{a1} = \frac{\left[H^{+}\right]\left[HCO_{3}^{-}\right]}{\left[H_{2}CO_{3}^{*}\right]} = 10^{-6.35} \tag{1}$$

$$K_{a2} = \frac{\left[H^{+}\right] CO_{3}^{2-}}{\left[HCO_{3}^{-}\right]} = 10^{-10.33}$$
(2)

For a closed system: $C_T = [H_2CO_3^*] + [HCO_3^-] + [CO_3^{2-}]$

[457.210A.002] Environmental Engineering

0.1 g CO₂ is added (molecular weight of CO₂ = 44.01) $C_{T} = \frac{0.1 g / (44.01 g / mol)}{0.25 L} = 9.09 \times 10^{-3} M$ At pH < pK_{al}, $[H_{2}CO_{3}*] \approx C_{T}$ (check the lecture notes!) $[H_{2}CO_{3}*] = 9.09 \times 10^{-3} M$ As pH = 3.5, $[H^{+}] = 10^{-3.5} M$ (activity \approx molarity for dilute solutions) Applying those values in Eq. (1), $[HCO_{3}^{-}] = 1.28 \times 10^{-5} M$ Applying the values in Eq. (2), $[CO_{3}^{2-}] = 1.89 \times 10^{-12} M$

7. [Basic chemistry concepts] You placed water in a bowl until it equilibrates with atmospheric CO₂ ($P_{CO2} = 10^{-3.5}$ atm). The pH of water is 7.5 and the temperature is 25°C.

a. Calculate the concentrations of [H₂CO₃*], [HCO₃⁻], and [CO₃²⁻].

Answer)

This is an open system.

From the lecture notes,

$$[H_2CO_3^*] = K_H P_{CO_2} = (10^{-3.5} atm)(10^{-1.5} M / atm) = 10^{-5} M$$
$$log [HCO_3^-] = -11.35 + pH = -3.85$$
$$[HCO_3^-] = 10^{-3.85} M = 1.41 \times 10^{-4} M$$
$$log [CO_3^{2-}] = -21.68 + 2pH = -6.68$$
$$[CO_3^{2-}] = 10^{-6.68} M = 2.09 \times 10^{-7} M$$

b. Calculate the carbonate alkalinity of the water.

Answer)

Carbonate Alkalinity =
$$[HCO_3^{-1}] + 2[CO_3^{2-1}] = (1.41 \times 10^{-4} M) + 2 \cdot (2.09 \times 10^{-7} M) = 1.41 \times 10^{-4} M$$

(carbonate (CO_3^{2-}) contributes very little)

*** Note that, by convention, alkalinity is expressed in units of " $\underline{mg} as CaCO_3 / L$ ".

This unit indicates what concentration of $CaCO_3$ (in mg/L) does the alkalinity correspond to.

For this class, just remember that, you have to multiply your results in Molarity by " $5x10^4$ mg as CaCO₃/mol"

Applying this logic,

Carbonate Alkalinity = $1.41 \times 10^{-4} M \times (5 \times 10^{4} \text{ mg as } CaCO_{3} / \text{mol}) = 70.5 \text{ mg as } CaCO_{3} / L$

8. [Basic biology concepts] What are the three constituents of a nucleotide?

Answer) A phosphate, a sugar, and a base.

9. [Basic biology concepts] List the four classes of macromolecules essential for life. Briefly explain the importance of each.

Answer)

Carbohydrates: energy for life

Nucleic acids: DNA and RNA – store and transmit genetic information

Proteins: regulate cellular functions by catalyzing biochemical reactions (enzymes); support structure of organisms.

Lipids: store energy (fats), make up cell membranes (phospholipids), and used for signaling (steroids)