1. Prove the following relationship for intrinsic semiconductors;

 $E_F = E_g/2 + (3/4)k_B T \ln (m_h * / m_e *)$

which represents that since $k_B T$ is small at room temperature, and the effective masses of electrons and holes are not very much different, we can say that the Fermi level is roughly halfway between the valence and conduction bands.

1.
$$
\mathcal{I}_n
$$
 intrinac semiconductar material, $N_e = N_h^*$
\n
$$
N_{e}^* = \frac{1}{4} \left(\frac{2m_e^* k_E T}{\pi k^2} \right)^{\frac{q}{2}} exp\left(-\frac{E_z - E_Y}{k_B T}\right)
$$
\n
$$
N_h^* = \frac{1}{4} \left(\frac{2m_h^* k_E T}{\pi k^2} \right)^{\frac{q}{2}} exp\left(-\frac{E_z - E_Y}{k_B T}\right)
$$
\n
$$
N_e^* = N_h^* ,
$$
\n
$$
\frac{1}{4} \left(\frac{2m_e^* k_E T}{\pi k^2} \right)^{\frac{q}{2}} exp\left(-\frac{E_z - E_Y}{k_B T}\right) = \frac{1}{4} \left(\frac{2m_h^* k_B T}{\pi k^2} \right)^{\frac{q}{2}} exp\left(-\frac{E_z - E_Y}{k_B T}\right)
$$
\n
$$
\Rightarrow \exp\left(\frac{2E_z - E_Y}{k_B T}\right) = \left(\frac{m_h^*}{m_e^*} \right)^{\frac{q}{2}} E_z \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right)^{\frac{q}{2}} \right)
$$
\n
$$
\Rightarrow 2E_z - E_z - E_V = k_H T h_h \left(\frac{m_h^*}{m_e^*}\right)^{\frac{q}{2}} = \frac{1}{2} \left(\frac{1}{1} \left(\frac{1}{1} \right)^{\frac{q}{2}} \right)
$$
\n
$$
\Rightarrow \varepsilon = \frac{E_z + E}{2} V + \frac{5}{4} k_H T h_h \left(\frac{m_h^*}{m_e^*}\right)
$$
\n
$$
\Rightarrow \varepsilon = \frac{E_z + E}{2} V + \frac{5}{4} k_H T h_h \left(\frac{m_h^*}{m_e^*}\right)
$$
\n
$$
\Rightarrow \varepsilon = \frac{E_z + E}{2} V + \frac{5}{4} k_H T h_h \left(\frac{m_h^*}{m_e^*}\right)
$$
\n
$$
\Rightarrow \varepsilon = \frac{E_z + E}{2} V + \frac{5}{4} k_H T h_h \left(\frac{m_h^*}{m_e^*}\right)
$$

2. In the figure below, σ is plotted as a function of the reciprocal temperature for an intrinsic semiconductor. Calculate the gap energy. (*Hint*: Use (8.14) and take the ln from the resulting equation.)

$$
e_{\frac{1}{2}}(f)(4)
$$
\n
$$
f = 4f4 \times 10^{15} \left(\frac{m^{*}}{m_{0}}\right)^{3/2} T^{1/2} e (\mu_{e} + \mu_{h}) \exp\left[-\frac{E_{2}}{2kT}\right]
$$
\n
$$
\ln f = const. - \frac{3}{2} \ln \frac{1}{T} - \frac{E_{3}}{2kT}
$$
\n
$$
\frac{f}{T} = \frac{2 \times 10^{16} \text{ J}}{2 \times 10^{16} \text{ J}} + \frac{1}{2} \frac{E_{2}}{2 \times 10^{16} \text{ J}} - \frac{E_{3}}{2 \times 10^{16} \text{ J}} - \frac{E_{4}}{2 \times 10^{16} \text{ J}} - \frac{E_{5}}{2 \times 10^{16} \text{ J}} - \frac{E_{6}}{2 \times 10^{16} \text{ J}} - \frac{E_{7}}{2 \times 10^{16} \text{ J}} - \frac{E_{8}}{2 \times 10^{16} \text{ J}} - \frac{E_{9}}{2 \times 10^{16} \text{ J}} - \frac{E_{1}}{2 \times 10^{16} \text{ J}} - \frac{E_{1}}{
$$

3. Consider a silicon crystal containing 10^{12} phosphorous atoms per cubic centimeter. Is the conductivity increasing or decreasing when the temperature is raised from 300˚C to 350˚C? Explain by giving numerical values for the mechanisms involved.

300^o°C o|²C| +55⁺ deor (phosphorous) e||A |²5⁺8.2747a e-¹ln³)⁰|
\n²⁰1²% Conduction band o|| 3⁺3⁺||4|4| (35°C n|45 5⁻¹)(
$$
\frac{10^{15} \times 1}{20}
$$
)
\n $-\frac{10^{14} \times 1}{10}$ Conduction band o|| 3⁺3⁺ 3⁺ 55n|4|2| 3⁺3⁺ 2⁰1.
\n $-\frac{10}{10}$ $\frac{m_e*}{m_o} = \frac{3 \times 10^{-8}}{10}$ 3⁺ 3⁺ 2⁰ 2⁺ 6⁰1/ $\frac{m_e*}{m_e} = 1$)
\n $\frac{E_3}{(30°C)} = E_{3o} - \frac{5}{5} \cdot 573^2$ 3⁺ 3⁺ 3⁻ 3⁻ 3⁻ 6⁻¹ 6

4. Consider a semiconductor with 10^{13} donors/cm³ which has a binding energy of 10 meV.

(a) What is the concentration of extrinsic conduction electrons at 300 K ?

$$
\frac{at}{\sqrt{1-\frac{1}{2}e^{(\frac{t}{10}-\frac{1}{10})}}}\frac{1}{\sqrt{1-\frac{1}{2}e^{(\frac{t}{10}-\frac{t}{10})/4T}+1}}=10^{\frac{13}{2}}(1-\frac{1}{0.5e^{(-0.01+0.5)}/(8.616\times10^{-5}+1)})\approx10^{\frac{13}{2}}(1-\frac{1}{0.5e^{(-0.01+0.5)}/(8.616\times10^{-5}+1})})
$$

(b) Assuming a gap energy of 1 eV (and $m^* = m_0$), what is the concentration of intrinsic conduction electrons?

$$
N_{e,in} = 4.84 \times 10^{15} \times (1) \times 300^{3/2} \text{ exp} \left(\frac{-1}{2 \times 6.616 \times 10^{-5} \times 300} \right) = 9.99 \times 10^{10} (24/\text{cm}^3)
$$

(c) Which contribution is larger?