1. Calculate the mobility of the oxygen ions in UO_2 at 700 K. The diffusion coefficient of O^{2-} at this temperature is 10^{-13} cm²/s. Compare this mobility with electron or hole mobilities in semiconductors (see Appendix 4). Discuss the difference! (*Hint*: O^{2-} has two charges!)

2. Calculate the activation energy for ionic conduction for a metal ion in an ionic crystal at 300 K. Take $Do = 10^{-3} \text{ m}^2/\text{s}$ and $D = 10^{-17} \text{ m}^2/\text{s}$.

$$D = p_0 \exp\left(-\frac{Q}{k_BT}\right) \rightarrow ln \frac{p_0}{p_0} = \frac{-Q}{k_BT} \qquad : \quad Q = -k_BT \ln \frac{p_0}{p_0} = -\theta.61(x/0^{-5} \cdot 300 \cdot ln (10^{-10}/0^{-10}) = 0.833 \text{ (eV)}$$

3. Show that $E = E_{vac}/\epsilon$ [Eq. (9.13)] by combining Eqs. (7.3), (9.9), and (9.11) and their equivalents for vacuum.

4. Show that the dielectric polarization is $P = (\epsilon - 1) \epsilon_0 E$. What values do P and D have for vacuum?

$$D = \angle z_0 E (9.14)$$

$$D = \angle z_0 E + P (9.15)$$

$$D = \angle z_0 E + P (9.15)$$

$$\Rightarrow \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P (9.15)$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = \angle z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = z_0 E + P \Rightarrow P = (z_0 - 1) \angle z_0 E$$

$$\Rightarrow D = z_0 E + P \Rightarrow P = (z_0 - 1) \angle$$