SEOUL NATIONAL UNIVERSITY SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

SYSTEM ANALYSIS	Spring 2015
HW #8	Assigned : May 12 (Tu)
	Due: May 21 (Th)

1. The oven shown in Figure 1 has a heating element with appreciable capacitance C_1 . The other capacitance is that of the oven air C_2 . The corresponding temperatures are T_1 and T_2 , and the outside temperature is T_0 . The thermal resistance of the heater-air interface is R_1 ; that of the oven wall is R_2 . Develop a model for T_1 and T_2 , with input q_i , the heat flow rate delivered to the heater mass.

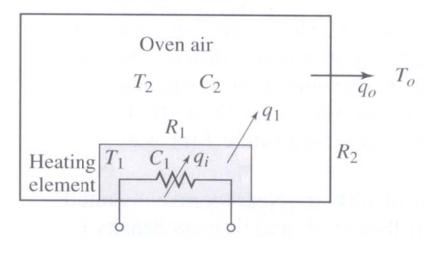
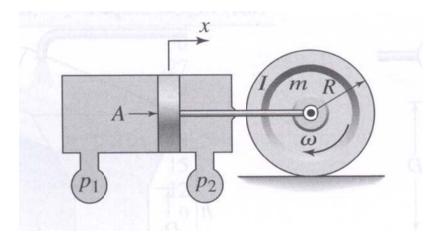



Figure 1

2. In figure 2 the piston of area *A* is connected to the axle of the cylinder of radius *R*, mass *m*, and inertia *I* about its center. Given $p_1 - p_2 = 3 \times 10^5$ Pa, A = 0.005m², R = 0.4m, m = 100kg, and I = 7kg·m², determine the angular velocity $\omega(t)$ of the cylinder assuming that it starts from rest.

Figure 2

3. Design a piston –type damper using an oil with a viscosity at 20°C of $\mu = 0.9$ kg/(m·s). The desired damping coefficient is 2000N·s/m. See Figure 3. (Assume laminar, incompressible and $m\ddot{y} \approx 0$)

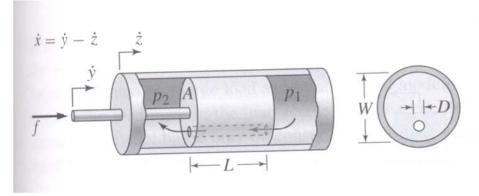


Figure 3

Hints:

$$m\ddot{y} = f - A(p_1 - p_2)$$

$$q_{\nu} = \frac{1}{\rho R}(p_1 - p_2)$$

$$q_{\nu} = A(\dot{y} - \dot{z})$$

$$R = \frac{128\mu L}{\pi \rho D^4}$$