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HW 1
2.8
Lt;.t x;j be the bit in row i, column j. Then the ith horizontal parity check is

hi = Zj xjj

- where the summation is summation modulo 2. Summing both sides of this equation
(modulo 2) over the rows i, we have

Zihi = Zij xjj

This shows that the modulo 2 sum of all the horizontal parity checks is the same as the
modulo 2 sum of all the data bits. The corresponding argument on columns shows that the
modulo 2 sum of the vertical parity checks is the same.

a) Any pattern of the form

— 1 -
— 11—
i Gl

will fail to be detected by horizontal and vertical parity checks. More formally, for any three
TOWs 1, i, and 13, and any three columns jy, J2, and 13, a pattern of six errors in positions
(11 1), (1 J2), (2 j2), (i2 j3)» (i3 j1), and (i3 j3) will fail to be detected.

b) The four errors must be confined to two Tows, two errors in each, and to two columns,
two errors in each; that is, geometrically, they must occur at the vertices of a rectangle
within the array. Assuming that the data part of the array is J by K, then the array including
the parity check bits is J+1 by K+1. There are (J+1)J/2 different possible pairs of rows
(counting the row of vertical parity checks), and (K+1)K/2 possible pairs of columns
(counting the column of horizontal checks). Thus there are (J+1)(K+1)JK/4 undetectable
patterns of four errors.
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Let x = (x1, X2, - xN) and x' = (x'1, X2, . x'N) be any two distinct code words in a parity
check code. Here N = K+L is the length of the code words (K data bits plus L check bits).
Let y = (y1, -- yN) be any given binary string of length N. Let D(x,y) be the distance
between x and y (i.e. the number of positions i for which Xj # yi). Similarly let D(x',y) and
D(x,x") be the distances between x' and y and between x and x'. We now show that

D(x,x") < D(x,y) + D(x"y)

To see this, visualize changing D(x,y) bits in x to obtain ¥, and then changing D(x'",y) bits

in y to obtain x". If no bit has been changed twice in going from x to y and then to x’, then
it was necessary to change D(x,y) + D( ,,¥) bits to change x to x' and the above inequality
is satisfied with equality. If some bits have been changed twice (i.e. x; = xj # y; for some
1) then strict inequality holds above.

By definition of the minimum distance d of a code, D(x,x") 2 d. Thus, using the above
inequality, if D(x,y) < d/2, then D(x',y) > d/2. Now suppose that code word x is sent and
fewer than d/2 errors occur. Then the received string y satisfies D(x,y) < d/2 and for every
other code word x’, D(x'y) > d/2. Thus a decoder that maps y into the closest code word
must select x, showing that no decoding error can be made if fewer than d/2 channel errors
occur. Note that this argument applies to any binary code rather than just parity check
codes.
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The first code word given, 1001011 has only the first data bit equal to 1 and has the first,
third, and fourth parity checks equal to 1. Thus those parity checks must check on the first
data bit. Similarly, from the second code word, we see that the first, second, and fourth
parity checks must check on the second bit. From the third code word, the first, second,
and third panty check each check on the third data bit. Thus

Cl =51 +582 +53

c2=57+ 53
€3 =51+ 53
C4=51+8p

The set of all code words is given by

0000000 0011110
1001011 1010101
0101101 0110011
1100110 1111000

The minimum distance of the code is 4, as can be seen by comparing all pairs of code

words. An easier way to find the minimum distance of a parity check code is to observe that
if x and x' are each code words, then x + x' (using modulo 2 componentwise addition) is
also a code word. On the other hand, x + x' has a 1 in a position if and only if x and x'
differ in that position. Thus the distance between x and x' is the number of ones in x + x'.
It follows that the minimum distance of a parity check code is the minimum, over all non-
zero code words, of the number of ones in each code word.
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D3 = Remainder
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Suppose g(D) contains (1+D) as a factor: thus g(D) = (1+D)h(D) for some polynomial h(D).

Substituting 1 for D and evaluating with modulo 2 arithmetic, we get g(1) = 0 because of
the term (1+D) = (1+1) = 0. Let e(D) be the polynomial for some arbitrary undetectable
error sequence. Then e(D) = g(D)z(D) for some z(D), and hence e(1) = g(1)z(1) = 0. Now

e(D) = Z; eiD}, so e(1) = Z; e;. Thus e(1) = 0 implies that an even number of elements e;

are 1; 1.e. that e(D) corresponds to an even number of errors. Thus all und_ctcctablc error

Sequences contain an even number of errors; any error sequence with an odd number of
errors 1s detected.
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LctI di(D) =D + 21Dl + .+ Di and assume i<j. Multiplying G(D) times Z(D) then
yi€

g(D)z(D) = DL+j +* (zj-l 7 gL__l)DL"}'j':l + (zj__2 + gL-lzj—l + gL_Z)DL-i-j—Z ST
+ (g1 + zjy))D1 + DI

Clearly the coefficient of DL+j and the coefficient of D are each 1, yielding the desired two
NON-ZETO terms. T!lc above case(1<j anises whenever z(D) has more than one non-zero term.
For the case in which z(D) has only one non-zero term, i.e. z(D) = Dj for some j, we have

g(D)z(D) = DL+ + g DL+l + _ + Dj

wl%:h again has at least two non-zero terms.

2.15

a) Let Di*L, divided by g(D), have the quotient z)(D) and remainder c@(D) so that
DHL = g@)zD) + @)

Multiplying by s; and summing over i,
s(D)DL = Z; sz®(D) + Zi sic®(D)

Since % sic@®(D) has degree less than L, this must be the remainder (and Z; siz®(D) the
quotient) on dividing s(D)DL by g(D). Thus c(D) = Zi sic®(D).

b) Two polynomials are equal if and only if their coefficients are equal, so the above
polynomial equality implies

cj=2Z4 siCj(i)

2.16
a) Consider the two scenarios below and note that these scenarios are indistinguishable to
the recelver.
0 X, 0 X, 1 X,
fAck

packet 1 -
accepted



packet 1
accepted

If the receiver releases the packet as x2 in the questioned reception, then an error occurs on
scenario 2. If the receiver returns an ack but doesn't release a packet (i.e. the appropriate
action for scenario 2), then under scenario 1, the transmitter erroneously goes on to packet
3. Finally, if the receiver returns a nak, the problem is only postponed since the transmitter
would then transmit (2,x2) in scenario 1 and (2,x;) in scenario 2. As explained on page 66,
packets x) and x7 might be identical bit strings, so the receiver can not resolve its ambiguity
by the bit values of the packets.

b) The scenarios below demonstrate incorrect operation for the modified conditions.

accepted

0 X 0 X, 1 X,
Ack
ak
packet 1 %
accepted Y
0] x 1 Xy 1 X4
Nak
packet 1 2
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a)”

b) q = (1-po(1-pp

A packet is transmitted once with probability g, twice with probability (1-g)q, three times

with probability (1-9)2q, etc. Thus the expected number of transmissions of a given packet
is :

T=T(+ T+ 2Ty

E{transmissions per packet} = Z iq(l—-q)i“1 = Cl!

i=1

To verify the above summation, note that for any x,0 <x <1,

oo oo -

ISR S LR

T (1)

i=1 i=l
Using x for (1-q) above gives the desired result.
c) E{time per packet} = (Ty + Tr + 2Td)/q
= (1.3)/0.998 = 1.303

Note that p; and pr have very little effect on E[time per packet] in stop and wait systems
unless they are unusually large.

(f"z".zo )

The simplest example is for node A to send packets 0 through n-1 in the first n frames. In
case of delayed acknowledgements (i.e. no return packets in the interim), node A goes back
and retransmits packet 0. If the other node has received all the packets, it is waiting for
packet n, and if the modulus m equals n, this repeat of packet 0 is interpreted as packet n.

The right hand side of Eq. (2.24) is satisfied with equality if SN = SNmin(t;)+n-1. This
occurs if node A sends packets 0 through n-1 in the first n frames with no return packets
from node B. The last such frame has SN = n-1, whereas SNpin at that time (say t;) is 0.

Continuing this scenario, we find an example where the right hand side of Eq. (2.25) 1s
satisfied with equality. If all the frames above are correctly received, then after the last
frame, RN becomes equal to n. If another frame is sent from A (now call this time t;) and
if SNin is still 0, then when it is received at B (say at tz), we have RN(t2) = SNpin(t1)+n.
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Let RN(t) be the value of RN at node B at an arbitrary time T; SNmin is the smallest packet
number not yet acknowledged at A at time t (which is regarded as fixed) and SNpax -1 is

the largest packet number sent from A at time t. Since RN(1) is non decreasing in 7, it is
sufficient to show that RN(t+Tp+Tg) < SNpay and to show that RN(t-Ty-Tg) 2 SNmpin.

For the first inequality, note that the packet numbered SNpax (by definition of SNpay) has
not entered the DLC unit at node A by time t, and thus can not have started transmission by
time t. Since there is a delay of at least Tyy+Tg from the time a packet transmission starts
until the completion of its reception, packet SNmax can not have been received by time
t+Tm+Tg. Because of the correctmess of the protocol, RN(t+Tpy+Tg) can be no greater than
the number of a packet not yet received, i.e. SNmax.

For the second inequality, note that for the transmitter to have a given value of SNyp at
time t, that value must have been transmitted earlier as the request number in a frame
coming back from node B. The latest time that such a frame could have been formed is t-
Tm-T4d, so by this time RN must have been at least SNpin.

T

2.23)

\_,__7_],' .
After a given packet is transmitted from node A, the second subsequent frame transmission
termination from B carries the acknowledgement (recall that the frame transmission in
progress from B when A finishes its transmission cannot carry the ack for that
transmission; recall also that propagation and processing delays are negligible. Thus q is
the probability of n-1 frame terminations from A before the second frame termination from
B. This can be rephrased as the probability that out of the next n frame terminations from
either node, either n-1 or n come from node A. Since successive frame terminations are
equally likely and independently from A or B, this probability is

n

N
(38

n! = =
q= z m 27 = (n+l)2

1=n—1

ot

g
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in isolated error in the feedback direction occurs, then the ack for a given packet is held
ap by one frame in the feedback direction (i.e., the number RN in the feedback frame
following the feedback frame in error reacknowledges the old packet as well as any new
packet that might have been received in the interim). Thus q is now the probability of n-1
frame terminations from A before 3 frame terminations from B (one for the frame in
progress, one for the frame in error, and one for the frame actually carrying the ack; see the
solution to problem 2.23). This is the probability that n-1 or more of the next n+1 frame

terminations come from A; since each termination is from A or B independently and with
equal probability,

n
= _(+1)! )} on1 _ -y
q_igl i!(n+1—i)!)2 = [n+2+(n+1)n/2]2
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\W/c {iew the system from the receiver and ask for the expected number of frames, ¥,
arriving at the receiver starting immediately after a frame containing a packet that is accepted
and running until the next frame containing a packet that is accepted. By the assumptions

of the problem, if the packet in a frame is accepted, then the next frame must contain the

next packet in order (if not, the transmitter must have gone back to some earlier packet,
which is impossible since that earlier packet was accepted earlier and by assumption was
acked in time to avoid the go back).

Since the next frame after a packet acceptance must contain the awaited packet, that packet
is accepted with probability 1-p. With probability p, on the other hand, that next frame
contains an error. In this case, some number of frames, say j, follow this next frame
before the awaited packet is again contained in a frame. This new frame might again
contain an error, but the expected number of frames until the awaited packet is accepted,
starting with this new frame, is again y. Thus, given an error in the frame after a packet
acceptance, and given j further frames before the awaited packet is repeated, the expected

number of frames from one acceptance to the next is 1+j+Y.

Note that j is the number of frames that the transmitter sends, after the above frame in error,
up to and including the frame in transmission when feedback arrives concerning the frame

in error. Thus the expected value of j is f. Combining the events of error and no error on
the next frame after a packet acceptance, we have :

v = (1-p) + p(1+B+y) = 1 + p(B+Y)

" Solving for y and for v = 1/y,

v=(1+Bp)/(1-p) v = (1-p)/(1+PBp)

Ij\‘
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~2.30,
g
a) The sequence below shows the stuffed bits underlined for easy yeadability:

01101111100011111010101111101111N001111010

b) Here the flags are shown underlined and the removed (destuffed) bits as x's:
091111101111 1%110011111x011111%111E1lx]lt

00011111101011111x
231

The modified destuffing rule starts at the beginning of the string and destuffs bit by bit. A
zero is removed from the string if the previous six bits in the already destuffed portion of
the string have the value 013. For the given example, the destuffed string, with flags
shown underlined and removed bits shown as x's, is as follows:

011011111x111111011111x101111110

32
The hint shows that the data string 01501x1x2.. must have a zero stuffed after 015, thus
appearing as 01500x1x2.... This stuffed pattern will be indistinguishable from the original
string 01500x1x2.. unless stuffing is also used after 015 in the string 01300x1x3-... Thus
stuffing must be used in this case. The general argument is then by induction. Assume
that stuffing is necessary after 015 on all strings of the form 0130kxx3.... Then such a
stuffed sequence is 0130k+1x3x5.... It follows as before that stuffing is then necessary after
015 in the sequence 0150k+1x1x3.. Thus stuffing is always necessary after 01°.

C2.33)

The stuffed string is shown below with the stuffed bits underlined and a flag added at the
end.

11011010001001001110100Q0101

The destuffing rule is to decode (destuff) the string bit by bit starting at the beginning. A
given 0 bit is then deleted from the string if the preceding three decoded bits are 010. The
flag is detected when a 1 is preceded by the three decoded bits 010 and the most recently
decoded bit was not deleted. The above is a general rule for detecting any type of flag
sequence, rather than just 0101; for this special case, it is sufficient to look for the
substring 0101 in the received string; the reason for the simplification is that if an insertion
occurs within the flag, it has to occur by simply a repetition of the first flag bit.

Let y be logoE{K] - j. Since j is the integer part of logoE {K}, we see that y must lie
between 0 and 1. Expressing A = E{K)}2] +j+ 1 in terms of Y and E{K}, we get

A =2 +logoE(K) - y+1
A-logE{K}=2Y-vy+1

This function of yis easily seen to be convex (i.e., it has a positive second denivative). It
has the value 2 at y=0and at Y= 1 and is less than 2 for 0 <y < 1. This establishes that



A <logoE(K]} + 2

Finding the minimum of 2Y - ¥ +1 by differentiation, the minimum occurs at

Y = -loga(ln 2)
The value of 2 - y+ 1 at this minimizing point is [In 2]"! + loga(n 2) + 1 = 1.914..., so

A210gE{K} + (In 2)"! + loga(In 2) + 1
)

Stuffed bits are always 0's and always follow the pattern 015. The initial 0 in this pattern
could be a bit in the unstuffed data string, or could itself be a stuffed bit. As in the analysis
of subsection 2.5.2, we ignore the case where this initial 0 is a stuffed bit since it is almost
negligible compared with the other case (also a well designed flag detector would not allow
a stuffed bit as the first bit of a flag). If a stuffed bit (preceded by 015 in the data) is
converted by noise into a 1, then it is taken as a flag if the next bit is 0 and is taken as an
abort if the next bit is 1. Thus an error in a stuffed bit causes a flag to appear with
probability 1/2 and the expected number of falsely detected flags due to errors in stuffed
bits is K2-7. If one is less crude in the approximations, one sees that there are only K-6
places in the data stream where a stuffed bit could be inserted following 015 in the data;
thus a more refined answer is that the expected number of falsely detected flags due to
errors in stuffed bits is (K-6)2-7.

There are eight patterns of eight bits such that an error in one of the eight bits would turn
the pattern into a flag. Two of these patterns, 017 and 170, cannot appear in stuffed data.
Another two of the patterns, 01300 and 00150, can appear in stuffed data but must contain
a stuffed bit (i.e. the O following 15). The first of these cases corresponds to the case in
which an error in a stuffed bit causes a flag to appear, and we have already analyzed this.
The second corresponds to a data string 0015. Thus the substrings of data for which a
single error in a data bit can cause a flag to appear are listed below; the position in which
the error must appear is shown underlined:

0011111

01011110
01101110
01110110
01111010

For any given bit position j in the K bit data string (j < K-7), the probability that one of
these patterns starts on bit j is 2-7 + 4.2-8 = 3.2-7. Thus the probability of a false flag being
detected because of an error on a data bit, starting on bit j of the data is 3p2-7. This is also
the expected number of such flags, and summing over the bits of the data stream, the
expected number is (K-7)3p2-7. Approximating by replacing K-7 by K, and adding this to
the expected number of false flags due to errors in stuffed bits, the overall probability of a
false flag in a frame of length K is (1/32)Kp. If K-7 is not approximated by K, and if we
recognize that the first pattern above can also appear starting at j=K-6, then the overall
probability of a false flag is approximated more closely by (1/32)(K-6.5)p.
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If A is the thronghput of the system, Little's theorem gives N = AT, so from the relation T=
o + BN2 we obtain T = ot +BA2T2 or

1:% )

This relation betweeen A ands T is plotted below.
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The maximum value of A is attained for the value T™ for which the derivative of (T - o0)/BT2

is zero (or 1/(BT2) - 2(T - a)/(BT3) = 0). This yields T* = 2c and from Eq. (1), the
corresponding maximal throughput value

g =il
Yo )

(b) When A < A*, there are two corresponding values of T: a low value corresponding to an
uncongested system where N is relatively low, and a high value corresponding to a
congested system where N is relatively high. This assumes that the system reaches a
steady-state. However, it can be argued that when the system is congested a small increase
in the number of cars in the system due to statistical fluctuations will cause an increase in
the time in the system, which will tend to decrease the rate of departure of cars from the
system. This will cause a further increase in the number in the system and a further increase
in the time in the system, etc. In other words, when we are operating on the right side of

the curve of the figure, there is a tendency for instability in the system, whereby a steady-
state is never reached: the system tends to drift towards a traffic jam where the car depature
rate from the system tends towards zero and the time a car spends in the system tends
towards infinity. Phenomena of this type are analyzed in the context of the Aloha
multiaccess system in Chapter 4.




3.5
The expected time in question equals

E{Time} = (5 + E{stay of 2nd student})*P{ Ist stays less or equal to 5 minutes}
+ (E{stay of 1st | stay of 1st > 5} + E{stay of 2nd})*
P{1st stays more than 5 minutes}.

We have E{stay of 2nd student) = 30, and, using the memoryless property of the
exponential distribution,

E{stay of 1st|stay of 1st> 5} = 5 + E{stay of 1st} = 35.
Also

P(1st student stays less or equal to 5 minutes) = 1 - e-530
P({1st student stays more than 5 minutes}= e-530.

By substitution we obtain
E{Time} = (5 + 30)*(1 - e79) + (35 + 30)* e380=135 4+ 30%e->30 = 60.394.
3.6

(a) The probability that the person will be the last to leave is 1/4 because the exponential
distribution is memoryless, and all customers have identical service time distribution. In
particular, at the instant the customer enters service, the remaining service time of each of
the other three customers served has the same distribution as the service time of the

. customer.

(b) The average time in the bank is 1 (the average customer service time) plus the expected
time for the first customer to finish service. The latter time is 1/4 since the departure
process is statistically identical to that of a single server facility with 4 times larger service
rate. More precisely we have

P{no customer departs in the next t mins} = P{1st does not depart in next t mins}
* P{2nd does not depart in next t mins}
* P{3rd does not depart in next t mins}
* P{4th does not depart in next t mins}
= (et)t= et

Therefore

P(the first departure occurs within the next t mins} =1- e,

‘and the expected time to the next depature is 1/4. So the answer is 5/4 minutes.

(c) The answer will not change because the situation at the instant when the customer
begins service will be the same under the conditions for (a) and the conditions for (c).
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(b) Let N;, N, be the number of arrivals in two disjoint intervals of lengths 1; and T, Then

P{N;+N, =1} = 30, _oP(N; =k, N, =n-k} = 2% _P{N; = k}P{N, = n-k}

= IR _oe [Ty k! e A2 (Aty) ™0/ (n-k)!]
=eMrl+ ﬂ)znkzo[(l’tl)k(ltz)(n'k)]/[k!(n-k)!]
= e-Mrl + [ (A1, + Aty)"/n!]

(The identity
0 _o[a¥b®k}/[k!(n-k)!] = (a + b)?/n!
can be shown by induction.)
(c) The number of arrivals of the combined process in disjoint intervals is

clearly independent, so we need to show that the number of arrivals in an
interval is Poisson distributed, i.e.

P{AJt+T) +...+ At+T)- Aj(1)-.. .- Ay(t) =n}
=g (M +.. A XA +.. .+ AYT]?/n!

For simplicity let k=2; a similar proof applies for k > 2. Then

P{A{(t+ 1) + Ay(t+7T) - Ay(t) - Ay(t) =n}
=30 _GP{A(t+T)- Aj(t) =m, Ax(t+ T) - Ay(t ) = n-m}
=30 _P{At+7)- A1) =m}P{Ax(t+7T) - Ay(t) =n-m}

and the calculation continues as in part {b). Also

P{1 arrival from A, prior to t| 1 occured}
= P{1 arrival from A, 0 from A,}/P{1 occured}

= (yte-Mie-A2)/(hieAt) = A /A

(d) Let t be the time of arrival. We have

P{t <s| 1 arrival occured} = P{t <s, 1 arrival occured }/P{1 arrival occured}
= P{1 arrival occured in [t;, s), O arrivals occured in [s, t,]}/P{1 arrival occured}

= (M(s - ty)eMs - MeMs -2/ (A1, - ty)eM2-D) = (s - )1z 1y)

This shows that the arrival time t is uniformly distributed in [t;, t5].

311
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(a) Let us call the two transmission lines 1 and 2, and let N 1(t) and N,(t) denote the
respective numbers of packet arrivals in the interval [0,t]. Let also N(t) = N; (t) + N,(t). We
calculate the joint probability P{N,(t) = n, Ny(t) = m}. To do this we first condition on N(t)
to obtain

P{Ny () = n, Np(t) = m} = ,_o=P(N;(t) = n, N(t) = m | N(t) = k}P{N(t) = k).
Since

P(Ny(t) =n, Ny(t) =m IN(® =k} =0 when kn+m
we obtain

P{N;(t) = n, Ny(t) = m} = P{N(t) =n, Ny(t) =m I N(t) = n + m}P{N(t) = n + m}
= P{Ny(t) = n, Np(t) = m I N(t) = n + m}e-M[(A)**2/(n + m)!]
However, given that n+m arrivals occurred, since each arrival has probability p of being a

line 1 arrival and probability 1-p of being a line 2 arrival, it follows that the probability that
n of them will be line 1 and m of them will be line 2 arrivals is the binomial probability

o A

Thus
n e, A. THmM
P{N;®=n, Ny() = m} = (n+m\p (1-p)e M——-_Enfm)!
n .
= e"“PQ‘-% & M(1-p) (M(;p)) 0
Hence

P{N,® =n} = 3 P{N,(® = n, Ny(t) = m}
m=0

D N sy (A(1—p))™
= Ap ; = (1-p) —

That is, {N;(t), t 2 0} is a Poisson process having rate Ap. Similarly we argue that {Ny(1),
t2 0} is a Poisson process having rate A(1 — p). Finally from Eq. (1) it follows that the

two processes are independent since the joint distribution factors into the marginal
distributions.



() Let A, Ay, and Ay be as in the hint. Let I be an interarrival interval of Ag and consider
the number of arrivals of A that lie in L. The probability that this nimber is n is the

probability of n successive arrivals of A followed by an arrival of Aj, which is p(1 - p).
This is also the probability that a customer finds upon arrival n other customers waiting in
an M/M/1 queue. The service time of each of these customers is exponentially distributed

with parameter 1, just like the interarrival times of process A. Therefore the waiting time of
the customer in the M/M/1 system has the same distribution as the interarrival time of
process Ap. Since by part (a), the process A is Poisson with rate | - A, it follows that the
waiting time of the customer in the M/M/1 system is exponentially distributed with
parameter [ - A.

3.12
For any scalar s we have using also the independence of T and T2
P(min{11,72) =s)=P(11 25, T225) =P(1125) P(T2 2 5)
= eghs g-Ass = e- (M +ha)s
Therefore the distribution of min{t;,73) is exponential with mean 1/(A; + A2).

By viewing T; and T2 as the arrival times of the first arrivals from two independent

Poisson processes fwith rates A1 and A, we see that the equation P(T1 < 12) =A1/(A1 + A2)
follows from Problem 3.10(c).

Consider the M/M/1 queue and the amount of time spent in a state k>0 between
transition into the state and transition out of the state. This time is min{t},T2}, where 11 is

the time between entry to the state k and the next customer arrival and 12 is the ime
between entry to the state k and the next service completion. Because of the memoryless

property of the exponential distribution, 1 and 13 are exponentially distributed with means
1/A and 1/p, respectively. It follows using the fact shown above that the time between
entry and exit from stae k is exponentially distributed with mean 1/(A+¢). The probability
that the transition will be from k to k+1 is A/(A+1) and that the transition will be from k to
k-1 is pt/(A-+H1). For state 0 the amount of time spent is exponentially distributed with mean

1/\ and the probability of a transition to state 1 is 1. Because of this it can be seen that
M/M/1 queue can be described as a continuous Markov chain with the given properties.



3.16

/-——b
e L O

My K,

The figure shows the Markov chain corresponding to the given system. The local balance
equation for it can be written down as :

PPo=Py
P lpl =P,

= P PaPy= P iPpPpy= = = (P PP )Py
but,

Zpi =pyp Hp p +.--) =1
-1

i=0

=P 1t Z(po“'pk)

k=0

6/
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N.

Ui =R;+ Xx‘i-‘j

=

where
U, : Unfinished work at the time of arrival of the ith customer
R;: Residual service time of the ith customer
N;: Number found in queue by the ith customer
X;: Service time of the jth customer
Hence

N.

i
E{U;} =E{R;} + E{X,_; IN;}
F1

Since X; ; and N; are independent
E{U;} =E{R;} + E{X}E(N;)
and by taking limit as i—ee we obtain U =R + (1/4)Ng =R + W)W =R + pW, so

W = (U - R)/p.

Now the result follows by noting that both U and R are independent of the order of
customer service (the unfinished work is independent of the order of customer service, and
the steady state mean residual time is also independent of the customer service since the
graphical argument of Fig. 3.16 does not depend on the order of customer service).

3.33

Consider the limited service gated system with zero packet length and reservation interval
equal to a slot. We have

Trpym = Waiting time in the gated system
For E{X2} =0, E(V} =1, oy? =0, p = 0 we have from the gated system formula (3.77)
Waiting time in the gated system = (m + 2 - 20)/(2(1 - 1)) = m/(2(1 - 1)) +1

which is the formula for Typy given by Eq. (3.59) .
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(a) The system utilization is p, so the fraction of time the system transmits data is p.
Therefore the portion of time occupied by reservation intervalsis 1 - p.

(b) It

(&)

p: Fraction of time a reservation interval is followed by an empty data interval

and M(t) is the number of reservation intervals up to time t, then the number of packets
transmitted up to time t is = (1 - p)M(1). The time used for reservation intervals is =
M(t)E{V}, and for data intervals = (1 - p)M(t)E{X]. Since the ratio of these times must be

(1 - p)/p we obtain
(1 - p)p=MEOE(VIAQ - PMOE{X)) =E{V}/(( - pE{X})

or
1-p=(PE{VDHAQ - p)E{X})
which using A= p/E{X}, vieldsp=(1 - p- AE{V}/(1 - p)
3.37

(a)
A = 1/60 per second
EX) = 16.5 seconds
E(X?2) = 346.5 seconds -
T = E(X) + AE(X2)/2(1-AE(X))
= 16.5 + (346.5/60)/2(1- 16.5/60) = 20.48 seconds

(b) Non-Preemptive Priority

In the following calculation, subscript 1 will imply the quantities for the priority 1
customers and 2 for priority 2 customers. Unsubscripted quantities will refer to the overall
system. i 1

ok

1
e s

60 1”300
E(X) = 16.5, E(X,) =4.5,E(X,) = 19.5

EGC) = 346.5

R= -21— A E(XY) = 2.8875

p =X E(X,)=0015

p, =%, E(X,) =026

w=2. =209
l—p1

= ri =4.043

2
1-p2

T, =7:4515, T, =23,543



(c) Preemptive Queueing

The arrival rates and service rates for the two priorities are the same for preemptive
system as the non-preemptive system solved above.

E(X}) =22.5, E(X;) =427.5

1 2
R =51 fcxl) = 0.0075

2
R, =R +>}, E(X;) = 28575
. _EOGp )+ R,
1
1-p :

TQ_ = E(Xz)(l-p l-p 2) + R2
15 )19 P,

T =Ty +A,T)/MA =19.94



3.40

(a) The algebraic verification using Eq. (3.79) listed below

Wy=R/(A-py-...-p)A-P1----- P

is straightforward. In particular by induction we show that

The induction step is carried out by verifying the identity

R(p; + =" + py) " Pr1R

PiWi+ -+ Wi+ Pra i Wi =
The alternate argument suggested in the hint is straightforward.

(b) Cost

e Senke oue

k=1 k=1

Cx
—\p, W
Xk)pk k

1-py—=pr A-p1—pYd=pP1—

= Pe1)

We know that W1 < W, < ..... < Wy, Now exchange the priority of two neighboring

classes i and j=i+1 and compare C with the new cost

1 = C T
C'= 2(% P W'y
k=1 |




In C' all the terms except k =1 and j will be the same as in C because the interchange does
not affect the waiting time for other priority class customers. Therefore

C'C=X_J-_ijj+%m i-%Pi“ﬁ-éijj-
1

J 1 J

We know from part (a) that
Z P, Wy = constant.
le=1

Since Wi is unchanged for all k except k =i and j (= i+1) we have
pW;+ ijj = piW’i+pJ.W'J-.

Denote
B = piW; - piW; = p;Wj-pjW

Clearly we have B > 0 since the average waiting time of customer class i will be increased
if class i is given lower priority. Now let us assume that

C:

-

<

X

1

Then

s =£L(pW' w.)__c_j_(pw_ w-.)-B_Ci_i
X—iirpin-x-jjjpjj ffj

i

Therefore, only if i lin can we reduce the cost by exchanging the priority
i i+l
order of i and i+1. Thus, if (1,2,3....,n) is an optimal order we must have

LT ... =



From Little's Theorem (Example 1) we have that P{the system is busy} = AE({X} .
Therefore P{the system is empty} =1 - AE{X]}.

The length of an idle period is the interarrival time between two typical customer arrivals.
Therefore it has an exponential distribution with parameter A, and its average length is 1/A.

Let B be the average length of a busy period and let I be the average length of an idle
period. By expressing the proportion of time the system is busy as B/(I + B) and also as
AE{X} we obtain

B = E{X}/(1- AE(X}).

From this the expression 1/(1 - AE{X}) for the average number of customers served in a
busy period is evident.

3.46
We have

W=R/1-p)

where
M(t L(r)
137, 12\7?'
RE sy % GalT

where L(t) is the number of vacations (or busy periods) up to time t. The average len gth of
an idle period is

o0 vV Lo
I=J p(v“ vle'kd’c-i—.l. 't')\e_hd‘c]dv
0 0 v

and it can be seen that the steady-state time average number of vacations per unit time

" Ly 1-
R
We have
0 o
) -
Y ggg 2 e OV _VAi-P)
hm‘—’“Tﬂ Pl BT R el
Therefore
R _AX2, VA1-p)
2 21
and
W= AX? +—‘-”_3

2]

“1-py 21
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3.49

(a) Since the arrivals are Poisson with rate A, the mean time until the next arrival starting
from any given time (such as the time when the system becomes empty) is 1/A. The time

average fraction of busy time is AE[X]. This can be seen by Little's theorem applied to the
service facility (the time average number of customers in the server is just the ime average

n
fraction of busy time), or it can be seen by letting _}:iXi represent the time the server is
1=
busy with the first n customers, dividing by the arrival time of the nth customer, and going
to the limit.

Let E[B] be the mean duration of a busy period and E[I] = 1/\ be the mean duration
of an idle period. The time average fraction of busy time must be E[B)/(E[B]+E[I]). Thus

AE[X] =EBV/(EBH+1/);  E[B] = -Expﬁq[xl

This is the same as for the FCFS M/G/1 system (Problem 3.30).

(b) If a second customer arrives while the first customer in a busy period is being served,
that customer (and all subsequent customers that arrive while the second customer is in the
system) are served before the first customer resumes service. The same thing happens for
any subsequent customer that arrives while the first customer is actually in service. Thus
when the first customer leaves, the system is empty. One can view the queue here as a
stack, and the first customer is at the bottom of the stack. It follows that E[B] is the
expected system time given a customer arriving to an empty system.

The customers already in the system when a given customer arrives receive no
service until the given customer departs. Thus the system time of the given customer
depends only on its own service time and the new customers that arrive while the given
custorner is in the system. Because of the memoryless property of the Poisson arrivals and
the independence of service times, the system time of the given customer is independent of
the number of customers (and their remaining service times) in the system when the given
customer arrives. Since the expected system time of a given customer is independent of the
number of customers it sees upon arrival in the system, the expected time is equal to the
expected system time when the given customer sees an empty system; this is E[B] as
shown above.

(c) Given that a customer requires 2 units of service time, look first at the expected system
time until 1 unit of service is completed. This is the same as the expected system time of a
customer requiring one unit of service (i.e., it is one unit of time plus the service time of all
customers who arrive during that unit and during the service of other such customers).
When one unit of service is completed for the given customer, the given customer is in
service with one unit of service still required, which is the same as if a new customer
arrived requiring one unit of service. Thus the given customer requiring 2 units of service
has an expected system time of 2C. Extending the argument to a customer requiring n units
of service, the expected system time is nC. Doing the argument backwards for a customer
requiring 1/n of service, the expected system time is C/n. We thus conclude that E[system

time | X=x] = Cx.
(d) We have

B = [ “(xdFoo = CELXTy L= T30

&
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3.50

(a) Since (p;j} is the stationary distribution, we have forall je S

Pj(Z%i & 2 i ) = Zpi(hj i 2 Pidi
€S S S s

€S
Using the given relation, we obtain for all je§
P qu ji =Z P
€S €S
Dividing by 2, P, it follows that
#£5

5j§_;qji= ; Did;;

for all je§, showing that [ﬁj} is the stationary distribution of the truncated chain.
(b) If the original chain is time reversible, we have p;jg;i = Pidij for all i and j, so the

condition of part (a) holds. Therefore, we have pjgji = pigij for all states i and j of the
truncated chain.

(c) The finite capacity system is a truncation of the two independent M/M/1 queues system,
which is time reversible. Therefore, by part (b), the truncated chain is also time reversible.
The formula for the steady state probabilities is a special case of Eq. (3.39) of Section 3.4.

3.52

Consider a customer arriving at time 1) and departing at time tp. In reversed system (€rms,
the arrival process is independent Poisson, s0 the arrival process to the leftof 1218
independent of the times spent in the system of customers that arrived at or to the right of
1. In particular, 12 - 11 is independent of the (rcvcrspd_ system) arrival process to the left of
t;. In forward system terms, this means that t - t1 18 independent of the departure process

to the left of t2.



3.54

The Markov chain for an M/M/1/m system is

m=3
T e g m——— T,
$ S M blocked
arrivals

Since this is a birth/death process, the chain is reversible. If we include

the arrivals that are blocked from the system, then the arrival process is Poisson (by
definition of M/M/1/m). If we include the blocked arrivals also as departures, then the
departure process is also Poisson (by reversibility).

Blocked arrivals apd departing blocked arrivals
R

S i

If we omit the blocked arrivals from consideration, the admitted arrival process has rate
M1-Pm), but this process is definitely not Poisson. One could, if one were truly maso-
chistic, calculate things like the interarrival density, but the only sensible way to charac-

::,z? tht}el process is to cl?aracteriz.e it :iointly with the state process, in which case it is
ply the process of arrivals during intervals when the state is less than m. The depar-

2



3.5

The session numbers and their rates are shown below:

Session Session number p Session rate Xp
ACE 1 100/60 = 5/3
ADE 2 200/60 = 10/3
BCEF 3 500/60 = 25/3
BDEF 4 600/60 = 30/3

The link numbers and the total link rates calculated as the sum of the rates of the sessions
crossing the links are shown below:

Link Total link rate
AC X1= 5/3

CE X +x3=30/3
AD X, =10/3

BD X4 =10

DE Xy + X4 =40/3
BC K3 = 25/3

EF X3+ X4 =55/3

For each link (i,j) the service rate is
K;; = 50000/1000 = 50 packets/sec,

and the propagation delay is D;=2x 103 secs. The total arrival rate to the system is
Y=2%x;=5/3 +10/3 + 25/3 + 30/3 = 70/3

The average number on each link (i, j) (based on the Kleinrock approximation formula) is:

A
Nij W ~ 1 +)‘11 1j

From this we obtain:

Link Average Number of Packets on the Link
AC (5/3)/(150/3 - 5/3) + (5/3)(2/1000) = 5/145 + 1/300
CE 1/4 +1/50

AD 1/14 + 1/150

BD 1/4 + 1/50



DE 4/11 + 275
BC 1/5 +1/60
EF 11/19 + 11/300

The average total number in the system is N = Z) N;; = 1.84 packet. The average delay

over 4ll sessions is T = N/y = 1.84 x (3/70) = 0.0789 secs. The average delay of the
packets of an individual session are obtained from the formula

' S 1
= 1) — D]
P 2 [uij(uij_jij)"* H-,j+ ij

@i,j)onp

For the given sessions we obtain applying this formula

Session p Average Delay T,
1 0.050
2 0.053
3 0.087
4 0.090
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If we insert a very fast M/M/1 queue (j1—>e) between a pair of queues, then the probability

distribution for the packets in the rest of the queues is not affected. If we condition on a
single customer being in the fast queue, since this customer will remain in this queue for

1/u (—0) time on the average, it is equivalent to conditioning on a customer moving from
one queue to the other in the original system.

If P(nj,...,nx) is the stationary distribution of the original system of k queues and
P'(nj....,0k,Nk+1) 1S the corresponding probability distribution after the insertion of the fast

queue k+1, then
P(ny,...,nk | arrival) = P'(ny,...,0k, Dk+1 = 1 I nge1 = i)

which by independence of ni, ...,nk, NDk+1, 1S equal to P(ny,...,nk).

3.61

We have Zpi =1.

The arrival rate at the CPU is A/p, and the arrival rate at the ith I/O port is Ap,/p,. B
Jackson's Theorem, we have Pe Pi/Po- By

m
P(ng, 0y, ... .lim) = H pi (1 - pi)
1=0

where p = A
Ho PO
)\_ 4

and pj=—5 fori>0
i PO

The equivalent tandem system is as follows:

CPU
0

—— /O 1 | —p - ... — /O m | _»

The arrival rate is A. The service rate for queue 0 is ppy and for queue i (i > 0) is KPo/P;-



3.64

(a) The state is determined by the number of customers at node 1 (one could use node 2
just as easily). When there are customers at node 1 (which is the case for states 1, 2, and

3), the departure rate from node 1 is p1; each such departure causes the state to decrease as
shown below. When there are customers in node 2 (which is the case for states 0, 1, and

2), the departure rate from node 2 is pp; each such departure causes the state to increase.

K, Hy T8

Hy Hy Hy
(b) Letting pj be the steady state probability of state i, we have p; = pj-1 p, where p = L/;.
Thus p;j = pop!. Solving for py,

po=[1+p+ p2+p3l, pi=popl i=1,23.

(c) Customers leave node 1 atrate |1 for all states other than state 0. Thus the time
average rate 1 at which customers leave node 1 is p(1-Pg), which is

e
1+p+p2+p3

(d) Since there are three customers in the system, each customer cycles at one third the rate
at which departures occur from node 1. Thus a customer cycles at rate 1/3.

(e) The Markov process is a birth-death process and thus reversible. What appears as a
departure from node i in the forward process appears as an arrival to node i in the backward

process. If we order the customers 1, 2, and 3 in the order in which they depart a node,
and note that this order never changes (because of the FCFS service at each node), then we
see that in the backward process, the customers keep their identity, but the order is reversed

with backward departures from node i in the order 3, 2, 1, 3, 2, 1, ....
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4.1
a) State n can only be reached from states 0 to n+1, so, using Eq. (3A.1),
n+1
p,= P_; O0Osn<m
i=0
m
2pa=1
n=0

b) Solving for the final term, pp+1, in the first sum above,

n—1
pn(l—Pnn) I zpipin

i=0

Pn+1 ™
Pn+l.n

c) pP1 = po(1-Pgo)/P1o

_ P1(0=P11)—poPo2 0,:(1“1’00)(1—1’11) = Poz]
=2 P2y L P1oP2; Py

d) Combining the above equations with po+p1+p2 = 1, we get

S P1oP2,
0™ P1oP21+(1=Pgg)P,;+(1-Pgo)(1-P; )—Pg,P1 g




4.4

a) Let E{n} be the expected number of backlogged nodes, averaged over tme. Since
m-E(n} is the expected number of nodes that can accept packets, and ga is the probability
that each receives a packet in a slot, the expected number of accepted arrivals per slot is

E{Na} = qa(m-E{n})

b) Since a limited number (i.e., m) arrivals can be in the system at any time, the time
average accepted arrival rate must equal the time average departure rate, which is the time
average success rate, E{ Psycc}. Thus

E{Psucc} = E{Na}= qa(m-E{n})

c) The expected number of packets in the system, E{Nsys} immediately after the beginning
of a slot is the expected backlog, E{n}, plus the expected number of arrivals accepted
during the previous slot, E{Na}. Thus,

E{Nsys}=E{n} + E{Na} = E{n}(1-qa) + gam

d) From Little's theorem, the expected delay T is E{Ngys) divided by the accepted arrival
rate E{N,]} Note that we are only counting the delay of the packets accepted into the
system and note also that we are regarding accepted arrivals as arriving discretely at the slot
boundaries.

T = E{Nsys}/E{Na} = 1 + E{n}/[qa(m-E{n})]

e¢) The above equations express the relevant quantities in terms of E{n} and make clear that
E{Na} and E{Psycc} decrease and E{Nsys) and T increase as n is decreased. Thus it
makes no difference which of these quantties is optimized; improving one improves the
others.



4.6
a) Substituting Egs. (4.1) and (4.2) into (4.5),
P suce = (m-n)qa(1-Ga)™1(1-go)" + nge(1-ga)™*(1-g)™!
Differentiating this with respect to g, (for n > 1) and consolidating terms, we get

aPS\lCC m-n n-1 1 q,(m-n) qn

The quantity inside brackets is decreasing in gy; it is positve for qr = 0 and negative as g
approaches 1. Thus there is a point at which this quantity is 0 and that point maximizes

P succ-

b) If we set qr equal to g, in the bracketed quantity above, it becomes (1-qam)/(1-qy). This
is positive under the assumption that g; < 1/m. Thus, since the quantity in brackets is
decreasing in qp, it is zero for gy > Qa.

9)
dPgycc - P, 4 dqi(qa) 9Pgcc = IPgcc

dq, = dq, dg, dg,  dq,

The above relation follows because dPgycc/dq; = 0 at q{(qa). We then have
oP Bon q,(m-n) gn
] S ]

Note that the bracketed term here differs from the bracketed term in part a) only in the first
term. Since the bracketed term in part a) is 0 at q{qa) and qr(qa) > qa, it follows that the
bracketed term here is negative. Thus the total derivative of Pgycc With respect to qa is
negative.

d) If arrivals are immediately regarded as backlogged, then an unbacklogged node
generates a transmission with probability gagr. Thus the probability of success is modified
by replacing qa with qaqy. This reduces the value of qa in Pgsycc and therefore, from part ),
increases the value of Pgy,c. at the optimum choice of g.



4.8

a) Let X be the time in slots from the beginning of a backlogged slot until the completion of
the first success at a given node. Let 'q = qrp and note that q is the probability that the node
will be successful at any given slot given that it is still backlogged. Thus

PiX=i) =q(i-gp-t ;i =

2 i- 1
E(X) = ZIQ(I-Q) -

i=1 9
The above summation uses the identity

St Zdzi _d)Z dmaz) 1
= ez & dz (1-2)
Taking q = 1-z gives the desired result. A similar identity needed for the second momenti

21+1
Zz,- Zd Zdz d[z/(l L N 1+z3

= g 4D
Using this identity wnh q=1-z, we havc

. e

E(X?} = zizqa-q)“‘ W
: 2 2
i=1 q (rq)

b) For an individual node, we have an M/G/1 queue with vacations. The vacations are
deterministic with a duration of 1 slot, and the service time has the first and second
moments found in part a). Thus, using Eq. (3.55) for the queueing delay and adding an
extra service time to get the system delay,

o MEET) 11 e 1.1
2 2 8 pm 2 4

Since the arrival rate is A/m and the service rate is q, we have p = A/(mq). Substituting thi
into the above expression for T and simplifying,

1 E 1-2p
qpd-p) 2(1-p)

T=

¢) For p=1 and gy=1/m, we have p = A, so that

m 1-2A
T=—nn+
1-A  2(1-A)

In the limit of large m, this is twice the delay of TDM as given in Eq. (3.59).



4.9 1

a) Let v be the mean number of packets in the system. Given’n packets in the system, with
each packet independently transmitted in a slot with probability v-1, the probability of an

idle slot, P{I|n} is (1-v-1). The joint probability of an idle slot and n packets in the
system is then

n

P{nI} = P(n}P{I|) = 1-v' |

P(I) = ZP{nI} zcx"(")("‘” =é

n=0 n=0

exp(-v)vn
n!

b) Using the results above, we can find P{n II}

P(n,I} _exp(-v+1) (v-1)"
B{H. . n!

Thus, this probability is Poisson with mean v-1.

P(nlI} =

¢) We can find the joint probability of success and n in the system similarly

exp(-v) (v-1)™"
(n-1)!

P(n,S} = P{n}P{S I} = % a(l-v ) 1=

n-1
exp(-v) (v-1) 1
Bl ; (@-1)! -~ &

d) From this, the probability that there were n packets in the system given a success is
P{n,S) _ exp(-v+l) (v-1)""

PSR (n-1)!
Note that n-1 is the number of remaining packets in the system with the successful packet
removed, and it is seen from above that this remaining number is Poisson with mean v-1.

P{nlS} =



4.10

a) All nodes are initially in mode 2, so when the first success occurs, the successful node
moves to mode 1. While that node is in mode 1, it transmits in every slot, preventing any
other node from entering mode 1. When that node eventually transmits all its packets and
moves back to mode 2, we return to the initial situation of all nodes in mode 2. Thus at
most one node at a ime can be in mode 1.

b) The _probability of successful transmission, pj, is the probability that no other node is
transmitting. Thus p; = (1-g)™-!. The first and second moment of the time between
successful transmissions is the same computation as in problem 4.8a. We have
1 = 2

X

X

¢) The probability of some successful dummy transmission in a given slot when all nodes
are in mode 2 is p2 = mgy(1-qy)™1. The first two moments of the time to such a success is
the same problem as above, with p; in place of p;. Thus

d) The system is the same as the exhaustive multiuser system of subsection 3.5.2 except
for the random choice of a new node to be serviced at the end of each reservation interval.
Thus for the ith packet arrival to the system as a whole, the expected queueing delay before
the given packet first attempts transmission is '

E(W,} =E(R,) + E{(N,)X +E(Y}

where R; is the residual time to completion of the current packet service or reservation
interval and Yj is the duration of all the whole reservation intervals during which packet 1
must wait before its node enters mode 1. Since the order of serving packets is independent
of their service time, E{N;} = AE{W} in the limit as i approaches infinity. Also, since the
length of each reservation interval is independent of the number of whole reservation
intervals that the packet must wait, E{Y;} is the expected number of whole reservation
intervals times the expected length of each. Thus

_R+E{S)v
1-p
e) Asin Eq. (3.64),
AX®  (1-p)v°
+* =
2 2v
Finally, the number of whole reservation intervals that the packet must wait is zero with
probability 1/m, one with probability (1-1/m)/m, and in general i with probability

(1-1/m)/m. Thus E{S} = m-1. Substituting these results and those of parts b) and c) into
the above expression for W, we get the desired expression.

w , p=AX

R=
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4.13

a) The tree and the corresponding operations for each slot are shown below

Success  Success Slot Transmit Waiting Feedback
Set Sets
1 S - e
ldle 2 I R 0
3 R - e
Idie 4 RL RR e
Collision 5 RLL RLR,RR 1
6 RLR RR 1
7 RR - 0

Collision

b) The second collision (i.e., that on slot 3) would have been avoided by the first
improvement to the tree algorithm.

c)e,0,e,1,1; the final set, RR, would have been incorporated into the next collision
resolution period in the second improvement.



4.15

a) The probability of i packets joining the left subset, given k packets in the original set, is
given by the binomial distribution

ki 2%
iT(k1)!

b) Assuming k = 2, the CRP starts with an initial collision that takes one slot. Givcn thati
packets go into the left subset, Aj is the expected number of additional slots required to .
transmit the left subset and Ay is the expected number on the right. Taking the expectation
over the number i of packets in the left subset, we get the desired result,

k -k
k!2
Ak =1+ ; —i!(k-i)! (Ai + Ak_i)
¢) Note that
z“: k12'® A 5ok .
T N ki
e 1!(k-1)! e 11(k-1)! ¥
Thus
k k k-1 -k
k!2 k+1 k!2
= it A = s |
Ak 1+ 2; D! Al 1+2 Ak+2 2 AT

Taking the Ay term to the left side of the equation, we have

-k+1
k!2 . 1
e T e ‘i = k+1
ilk-)I(1-2 ) 1-2

Evaluating this numerically, A3 = 5 and A3 = 23/3.



4.18

a) and b)
r —
&
e =
4P
<—>
X X3
left interval right feedback
boundary size boundary atend
Tk o Tk+0op e
Tk op/2 Ti+ow/2 1
Ti+og/2 ag/2 T+ e
Ti+o/2 og/4 Tr+30p/4 e
Ti+og/2 o/8 Tr+50/8 1
Ti+50/8 agp/8 Tr+30p/4 1

¢) The diagram below shows the path through the Markov chain for the given sequence of

events:

rule
for next

4.15
4.16
4.15
4.15
4.16
4.18



4.20

Let ny (or n, suppressing the subscript for slot time) be the backlog at slot k and assume n
is Poisson with known mean v. Each of the n packets is independently transmitted in slot k
with probability qr(v), so the probability that the kth slot is idle, given n, is P{I|n} =
[1-g(V)]". Thus the joint probability of n backlogged packets and an idle slot is

P{nI} = P{n}P{IIn} = %nq,(vn

W[V -vgW)]"
P(I} = zp{n,l} = zexP( : e exp[-vq, (V)]

n!
n=0 n=0

n

P(n1} expl-v+vq ()] [v-vg )]’
P(nlI} = IE;‘I]}= =

Thus, this probability is Poisson with mean v-vq(v). Next consider a success

exp(-v) V"
n!

P(n,S} = P(n)}P(S ) = a[1-q W)™ q,v)

exp(-v) [v-vg (V)]"'vq (v)
v (n-1)!

n-1
[v-vq (V)]
P(S} = ;P{n’s }= vq,(V)cxp(-v)g—(—nq—)-!— = vq (V)exp[-vq (V)]

expl-v+vg (V)] [v-vg (V)]
(n-1)!

This says that the aposteriori distribution of n-1, given S, is Poisson with mean v-vgy(v).

P{n|S) =




4.21

a) Since X and X are non-negative random variables, max(X1, X2) < X;1+X> for all
sample values. Taking expectations,

s 28=2
Suppose X takes values B with probability 1-€ and k3 with probability €. Since
- 1.
X =B(1-e) + kBe =1, we have €= B
B(k-1)

Y takes on the value B with probability (1-£)2 and the value kB with probability 2¢-€2, so

Y = Bll+(c-1)2e-€)] = B + (1-B)(2-¢)
As k gets large, € gets small and the final € in the above expression is negligible. Thus, for
small B, E{Y} = 2.
b) With a collision between two packets, the time until both transmissions are finished is
the maximum of the two transmission times; the expected value of this is at most 2 from a),
and the following idle slot adds a final (A more refined analysis, using P as the minimum
packet length, would show that E{Y} < 2-B, so the final B could be omitted).

¢) The time between state transitions is 8 with probability e-8®, (1+B) with probability
g(n)e'8®), and at most (2+p) with probability [g2(n)/2]e-8™ (ignoring collisions of more
than two packets). Thus the expected time between transitions is at most

Be*™ + (1+B)g(m)e E™ + (1+p/2)g%(n)e B™

d) The success probability in state n is g(n)e-8®), so the expected number of departures per
unit time is the ratio of this to expected time between transitions (this can be justified

rigorously by renewal theory). Thus the expected number of departures per unit time is at
least

g(n)e &™ g(n)

Be ™ 4 (14B) gm)eB® +(1 fﬁ/2)g2(n)c'g(n) B+(1+B)g(n)+(1+B/2)g*(n)

e) Taking the derivative of this with respect to g(n), we find a maximum where g3(n) =

B/(1+B/2). Thus for small B, g(n) is approximately the square root of B. Substituting this
back into the expression in d), the maximum throughput (i.e., departures per unit time), is

approximately 1-2Vp.
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