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6-5: From Equation (6.15) the integral, apart from the normalization con-
stants, is
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It is possible to express the integral in terms of real and imaginary parts, but it
turns out to be more convenient to do the integral directly in terms of complex
exponentials;
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The above form for the integral is valid only for m; # m, whis:h is given for this
case. In evaluating the integral at the limits, the fact that e 211 = 1 for any
integer n (in this case (mj — my)) has been used.
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6-8: (a) For a situation where 9 depends only on ¢, Equation (6.13) re-
duces to

1 d%p + 2m
r2sing d¢2 = R?

2y + 2mr? sin @
dg? 2
This assumes that there is no force, and hence no potential variation, in the ¢-

direction. Although sin@ could be treated as a parameter, the convenient choice is
0= E; that is, the ring is in the equatorial plane, and sin@ = 1, r = R, so that

Eyp=0, or Ey=0.

Schrodinger’s equation becomes
diyp _2m R?
d¢2 - K2
Note that because 4 is assumed to depend only on the variable ¢, partial derivatives
have been replaced by total derivatives.

Ey.

(b) The differential equation is identical to Equation (6.8), the solutions to
which are Equation (6.15), again with m; an integer. The normalization constant
A is that found in Problem 6-6, A = 1/v/2m.

(¢} Comparison of Equation (6.8) with the differential equation obtained in
part (a) gives

2mR? h?
5 E=m}, or E= Oy m3.

(d) The possible z-components of angular momenta are the values of L, as

given in Equation (6.22),

L;=m#A, my =0, £1, &2, ....

Note that there is no upper limit on the possible values of L. This indicates that
any value of {, the orbital quantum number, is possible. This is consistent with the
uncertainty principle; because the value of 8 is fixed, A8 = 0, and s0 AL must be
infinite.
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