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9-43: Using Equation (9.29),
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10-2: There are 6 nearest-neighbor ions, each with an opposite charge and
each at a distance r, correspounding to the center of each face of a cube. There are
12 next-nearest neighbor ions, each with the same charge and each at a distance
v2r, corresponding to the center of each edge of a cube. At this point, it could
be noted that these first two contributions to the Madelung constant correspond to
the terms U; and U; in the explanation leading to Equation (10.1).

The eight corners of the cube are each a distance /3 r away, and have opposite
charge. The ions a distance 2r = v4r away are at the centers of the adjoining
cubes, and have the same charge. In each of these six adjoining cubes, there are
4 jons that are a distance v5r away, and these have the same charge. These
combinations comprise the first five terms of the Madelung constant for NaCl, and
the expression is valid for any crystal with the same structure.
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2. Derivation of the Density of State in 2-D Metal

Constraints of the particular lattice can be included in the effective mass of the electron at the

end of the derivation. For free electron, the two-dimension Schrodinger wave equation becomes
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A common approach of set boundary condition is to use periodic boundary conditions, in which
we quantize the electron enerties in a cube of material of side L.

W(x+L,y)=Y(x,y) and similarly for y-direction. Thus our function can be written as
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Then substituting this equation into the Schrodinger wave equation
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Let us determine the number of allowed states per unit area as a function of energy in two-
dimension case.

First we count states in k-space. For the 2-D case, the components of k-vector are
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Hence, the number of states for 2-D in k-space of Ak, taking into account the factor of 2 spin

degeneracy, is
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In general, for p—dimensions we can generalize the expression
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So mn 2-D case the number of states per unit area :W(L\Jf)
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We can then transform from k-space to E-space using the E(k) band structure relationship by
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And the simplist band structure is parabolic
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The area in k—space between two constant circle at k and k+ dk 1s
Ak =27kdk
The density of state then becomes
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Ve see that for 2-D, the density of states is a constant in energy, unlike 1-D or 3-D cases.
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Fermi level in 2-D system is constant. Because the total electron number is fixed over the

system and N(E)dE is constant. In 3-D system, the dependence of density of states on energy
changes by ~E . Then the Fermi level mayv changes to fix the total number of electron in the

svstem.
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